100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

COS2633 Exam Pack 2025

Puntuación
-
Vendido
-
Páginas
119
Grado
A+
Subido en
21-09-2025
Escrito en
2025/2026

This exam pack for the Numerical Methods I course (COS2633) contains questions and solutions from past examinations. The document is a useful resource for exam preparation and includes detailed instructions for the online examination. It also provides a list of useful formulas on the last page.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
21 de septiembre de 2025
Archivo actualizado en
1 de octubre de 2025
Número de páginas
119
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

UNIVERSITY EXAMINATIONS UNIVERSITEITSEKSAMENS




October/November 2020
NUMERICAL METHODS I
COS2633
Duration: 2 hours 100 Marks

Examiners:
First: DR L MASINGA
Second: DR Z ALI PROF H JAFARI
This is a closed book examination.

This examination paper remains the property of the University of South Africa, and may not be shared or
distributed in any format.

This is an online examination, which you have to write within 2 hours and submit online using the
eAssessment Tool through the link: https://myexams.unisa.ac.za/portal

Late submissions beyond the allocated time will not be accepted.

SPECIFIC INSTRUCTIONS:

1. ANSWER ALL FOUR QUESTIONS.

2. A non-programmable calculator can be used for computations.

3. Start each question on a new page. Keep parts of a question together.

4. Show all essential work and formulas used in the computations.

5. Useful formulae are given on the last page




[TURN OVER]




Downloaded by: tatummurray | Want to earn
Distribution of this document is illegal R13,625 per year?

, 2 COS2633
October/November 2020


QUESTION 1

The solution of the nonlinear equation e−x = x in [0, 1] is to be approximated numerically

(a) Perform three iterations of the method of false position (Regula falsi) to approximate the solution, using (10)
x0 = 0, x1 = 1 and five decimal digit arithmetic with rounding.

(b) Use Newton’s method with x0 = 0.5 to compute an approximate solution that is correct to 10−4 . (10)

(c) How many iterations of the Bisection method will yield a solution of the same accuracy as the Newton’s (5)
approximation in (b) above; i.e. correct to 10−4 ?
[25]


QUESTION 2

In the data below, y is the speed (in m/sec) at which an object slides through a device x seconds after it is released.

x(secs) 4.5 5.5 6.5 7.5
y(m) 2.1 1.7 1.2 0.9

(a) What is the least degree interpolating polynomial that interpolates all the data points? Explain your (3)
answer.

(b) Use the Lagrange form of the interpolating polynomial that interpolates all the points, to approximate (12)
the speed at which the object slides 6 seconds after it is released.

(c) Use the composite Trapezoidal rule to approximate the total distance travelled by the object during the (5)
slide in the given interval of measurement.
3
(d) Approximate the total distance travelled by the object using Simpson’s 8 rule. (5)
[25]


QUESTION 3

Consider the experimental data below for a certain function, f (x):

xi 0 0.15 0.31 0.5 0.6 0.75
f (xi ) 1.0 1.004 1.031 1.117 1.223 1.422

(a) Write down explicitly the system of normal equations to be solved when using the least-squares polynomial (13)
of the form P (x) = a0 + a1 x + a2 x2 to approximate f (x) from the given data.

(b) Write the system in (a) above in matrix form. (2)

(c) Use LU -factorisation (decomposition) to solve the system in (b) above, given that the lower triangular (10)
matrix L is given by  
2.4495 0 0
L =  0.9431 0.6338 0 
0.5271 0.4716 0.1340
and the upper triangular matrix U = LT . Hence deduce the second degree least-squares polynomial for
the given data.Use 4 decimal place precision in your computations.
[25]



[TURN OVER]


Downloaded by: tatummurray | Want to earn
Distribution of this document is illegal R13,625 per year?

, 3 COS2633
October/November 2020


QUESTION 4



(a)

(i) Use Gaussian elimination to find the exact inverse of the matrix (12)
 
6 1 1
A= 2 4 0 .
1 2 6

(ii) Use the inverse obtained in (i) above to compute the solution of (3)
    
6 1 1 x 5
 2 4 0   y  =  −6 
1 2 6 z 3


(b) Consider the data (10)

f (0.1) = −0.6205, f (0.2) = −0.2839, f (0.3) = 0.0066
f (0.4) = 0.2484

Construct the divided difference table for the data and find an approximation of f (0.35) using Newton’s
backward-difference polynomial that interpolates all the points.
[25]




[TURN OVER]

Downloaded by: tatummurray | Want to earn
Distribution of this document is illegal R13,625 per year?

, 4 COS2633
October/November 2020


Useful Formulas
• Nonlinear equations

f (xk )
xk+1 = xk −
f 0 (xk )
f (xk )(xk − xk−1 )
xk+1 = xk −
f (xk ) − f (xk−1 )

x(k+1) = x(k) − J −1 (x(k) )F(x(k) )


• Interpolation and Curve fitting

(x − x0 )(x − x2 ) . . . (x − xi−1 )(x − xi+1 . . . (x − xn ))
Li (x) =
(xi − x0 )(xi − x2 ) . . . (xi − xi−1 )(xi − xi+1 . . . (xi − xn ))
f [xi+1 , xi+2 . . . xi+k ] − f [xi , xi+1 . . . xi+k−1 ]
f [xi , xi+1 , . . . , xi+k−1 , xi+k ] =
xi+k − xi
1
f [x0 , x1 , . . . , xk ] = ∆k f (x0 )
k!hk
1
f [xn , xn−1 , . . . , xn−k ] = ∇k f (x0 )
k!hk

Sj (xj ) = aj + bj (x − xj ) + cj (x − xj )2 + dj (x − xj )3 , j = 0, 1, 2, . . . , n − 1]
 Pn Pn Pn n Pn
 aP0 1 1 + a1P 1 xi + · · · + anP 1 xi = P 1 yi
 a0 n1 xi + a1 n1 x2i + · · · + an n1 xn+1 n


i = 1 xi yi
.. ..


 . = .
n n+1 n n n
a0 1 xni + a1 1 x2i + · · · + an 1 x2n
P P P P
= 1 xi yi

i


• Numerical integration

R xi+1 h h3
xi
f (x) dx ≈ [f (xi ) + f (xi+1 )] − f 00 (ξ), xi < ξ < xi+1
2 12
R xi+2 h h5
xi
f (x) dx ≈ [f (xi ) + 4f (xi+1 ) + f (xi+2 )] − f 00 (ξ), xi < ξ < xi+2
3 90
R xi+3 3h 3h5 00
xi
f (x) dx ≈ [f (xi ) + 3f (xi+1 ) + 3f (xi+2 ) + f (xi+3 )] − f (ξ), xi < ξ < xi+3
8 80
Rb Pn R1 1
a
f (x) dx ≈ i=1 ci f (xi ) = −1
g(t) dt, x= [(b − a)t + a + b]
2
TOTAL MARKS: [100]


c
UNISA 2020




Downloaded by: tatummurray | Want to earn
Distribution of this document is illegal R13,625 per year?
$5.00
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
MedTechStudyHub Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
37
Miembro desde
1 año
Número de seguidores
2
Documentos
1244
Última venta
2 días hace
BrainBooster

Get access to 100% verified exams, test banks, and study guides for ATI, NURSING, PMHNP, TNCC, USMLE, ACLS, WGU, and many more! We guarantee authentic, high-quality content designed to help you ace your exams with confidence. If you can’t find what you’re looking for, simply contact us — we’ll fetch it for you within minutes! ✅ Trusted by thousands of students ✅ Fast delivery &amp; verified accuracy ✅ Guaranteed success on your next exam Buy with confidence — success starts here!

Lee mas Leer menos
4.3

12 reseñas

5
7
4
3
3
1
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes