100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Physics 1 Visual Success Guide: Complete Concept Maps & Problem-Solving Flowcharts - Never Get Lost Again!

Puntuación
-
Vendido
-
Páginas
32
Subido en
26-08-2025
Escrito en
2025/2026

Summary of 32 pages for the course PHYSICS 1 at Harvard University












Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Información del documento

Subido en
26 de agosto de 2025
Número de páginas
32
Escrito en
2025/2026
Tipo
Resumen

Vista previa del contenido

Comprehensive Visual Physics Study Guide
Complete Visual Reference with Detailed Concept Maps, Flowcharts, and Problem-Solving
Strategies


Table of Contents
PART I: FUNDAMENTAL CONCEPT MAPS
1. Classical Mechanics Visual Framework
2. Thermodynamics Process Diagrams
3. Electromagnetism Field Visualizations
4. Quantum Mechanics Conceptual Maps
5. Modern Physics Timeline and Connections
PART II: PROBLEM-SOLVING FLOWCHARTS
6. Mechanics Problem Decision Trees
7. Thermodynamics Process Analysis
8. Circuit Analysis Strategies
9. Wave and Optics Problem Solving
10. Quantum Problem-Solving Pathways
PART III: FORMULA ORGANIZATION CHARTS
11. Constants and Unit Conversion Maps
12. Mathematical Tools for Physics
13. Equation Derivation Pathways
14. Dimensional Analysis Visual Guide
PART IV: MEMORY PALACE TECHNIQUES
15. Physics Constants Memory System
16. Formula Pattern Recognition
17. Physical Intuition Development
18. Common Mistakes Prevention Guide
PART V: INTERACTIVE STUDY AIDS
19. Self-Assessment Flowcharts
20. Exam Preparation Roadmaps

,PART I: FUNDAMENTAL CONCEPT MAPS

1. Classical Mechanics Visual Framework

Force and Motion Hierarchy

CLASSICAL MECHANICS
|
┌──────────────────┼──────────────────┐
| | |
KINEMATICS DYNAMICS STATICS
(motion) (forces) (equilibrium)
| | |
┌───┴───┐ ┌────┼────┐ ┌───┴───┐
| | | | | | |
1-D 2-D F=ma W=F·d P=mv ΣF=0 Στ=0
| | | | | | |
Position Projectile Newton Work-Energy Linear Rotational
Velocity Circular Laws Theorem Balance Balance
Acceleration | | | |
| Motion Gravity Energy Forces Torques
| | | Conservation | |
Constant Air Weight KE + PE Tension Moment
Accel Resistance | = const Friction Arm
| | 9.8m/s² | | |
Kinematic Drag | Conservative Normal Equilibrium
Equations Force mg Forces Forces Conditions
| | | | | |
v=u+at F∝v² Universal Potential Coefficient Static vs
s=ut+½at² | Gravitation Energy of Friction Dynamic
v²=u²+2as | | | | |
| Terminal GMm/r² U = mgh μₛ > μₖ Stability
Graphs Velocity | U = ½kx² | Analysis
| | Kepler's | | |
Position- v_t Laws Springs Inclined Center of
time = √(mg/b) | | Planes Mass
Velocity- | Elliptical Hook's | |
time Air Orbits Law Components Moment of
Acceleration-Resistance | | Resolution Inertia
time Effects Satellites F = -kx | |
| | Parallel Parallel &
Escape Harmonic Series Perpendicular
Velocity Motion | Axis Theorem
| | Force |
v = √(2GM/R) SHM Analysis I = Icm + md²



Energy Conservation Visual Map

MECHANICAL ENERGY
|
E = KE + PE
|

, ┌──────────────────┼──────────────────┐
| | |
KINETIC ENERGY POTENTIAL ENERGY WORK-ENERGY
KE = ½mv² PE = mgh THEOREM
| PE = ½kx² W = ΔKE
┌───┴───┐ | |
| | ┌────┴────┐ ┌───┴───┐
Translational Rotational | Conservative | Non-Conservative
KE = ½mv² KE = ½Iω² | Forces | Work
| | | | | |
Linear Angular Gravity Springs Friction Heat
Motion Motion | | | |
| | U=mgh U=½kx² W_f<0 Q=mcΔT
Reference Moment of | | | |
Frame Inertia Field Elastic Energy Energy
| | Lines Potential Lost Transfer
Ground I=∫r²dm | | | |
Level | Equipot. Restoring Dissipation Thermal
| Common Surfaces Force | Systems
Center of Shapes | | Coefficient |
Mass | Contour F=-kx of Friction Heat
| Sphere Maps | μ Engines
System I=⅖mR² | Oscillations | |
Energy Cylinder | | f=μN Efficiency
| I=½mR² Gradient SHM: x(t) | η=W/Qₕ
Isolated Rod ∇U = -F =Acos(ωt+φ) | |
Systems I=1/12mL² | | Rolling Carnot
| | Conservative Period Friction Cycle
Total Point Law T=2π√(m/k) | |
Energy Mass ΔE_mech=0 | Combined η_c=1-Tₑ/Tₕ
E=const I=mR² | Energy Motion |
| | Mechanical of SHM | Maximum
Collision Parallel Energy E=½kA² Rolling Theoretical
Analysis Axis Conserved | w/o slip Efficiency
| Theorem | Amplitude | |
Elastic I_total | A v=ωR Real
vs =I_cm+md² | | | Engines
Inelastic | Non-Cons. Max KE Pure Always
| | Forces at x=0 Rolling Less
Momentum Gyroscopes | | | |
Conserved | W_nc≠0 Max PE Energy Heat
Always Precession | at x=±A Partition Loss
| | Energy | | |
Perfect Angular Added/ | KE_trans Friction
Elastic Momentum Removed | +KE_rot Air Resistance
COR=1 L=Iω | | | Other Losses
| | Examples | ½mv²+½Iω² |
Perfectly Conserved | Phase | Efficiency
Inelastic if τ=0 | Diagrams | Always
COR=0 | Friction | | <100%
| | | Energy | |
Explosion Torque Sliding vs Total Real World
Analysis Changes | Position KE Applications
| L Heat | | |
Recoil | | x vs t Linear Power Plants
Velocity τ=dL/dt Q=f·d v vs t +Angular Vehicles

, Rotational Motion Analogy Chart

LINEAR MOTION ↔ ROTATIONAL MOTION
| |
Position: x ↔ Angle: θ
Velocity: v ↔ Angular Velocity: ω
Acceleration: a ↔ Angular Acceleration: α
| |
Mass: m ↔ Moment of Inertia: I
Force: F ↔ Torque: τ
| |
p = mv ↔ L = Iω (Angular Momentum)
F = ma ↔ τ = Iα
F = dp/dt ↔ τ = dL/dt
| |
KE = ½mv² ↔ KE = ½Iω²
P = Fv ↔ P = τω
| |
x = vt ↔ θ = ωt
v = at ↔ ω = αt
x = ½at² ↔ θ = ½αt²
| |


Key Insight: Every linear motion concept has a rotational analog!


2. Thermodynamics Process Diagrams

State Function vs Path Function Map

THERMODYNAMICS
|
┌──────────────────┼──────────────────┐
| | |
STATE FUNCTIONS PATH FUNCTIONS PROCESSES
(Independent (Depend on (How system
of path) path) changes state)
| | |
┌───┼───┐ ┌────┼────┐ ┌───┼───┐
| | | | | | | | |
P V T Q W S_gen ISO- ADIA- GENERAL
| | | | | | THERMAL BATIC |
Internal Energy Heat Work Entropy | | |
U = f(T) Added Done Generated | | |
| to by During dQ=0 dU=0 dS≥dQ/T
Enthalpy System System Process | | |
H = U + PV | | | T=const P=const Polytropic
| Q>0 W>0 S_gen≥0 | | Process
Entropy Heat Work Irrever- | | PVⁿ=const
S = ∫dQ_rev/T In Out sibility PV=const | |
| | | | for gas | Throttling
Gibbs Free Q<0 W<0 S_gen=0 | | |
Energy Heat Work Reversible | Adiabatic Expansion
$21.83
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
PhysicsMadeEasy

Conoce al vendedor

Seller avatar
PhysicsMadeEasy Sveučilšte J.J.Strossmayera
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 meses
Número de seguidores
0
Documentos
3
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes