100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Physics 107 Quantum Mechanics Complete Guide: From Wave Functions to Advanced Theory - Graduate Level

Puntuación
-
Vendido
-
Páginas
25
Subido en
26-08-2025
Escrito en
2025/2026

PHYSICS 107 QUANTUM MECHANICS MASTERY Advanced quantum theory for serious Physics 107 students! ADVANCED PHYSICS 107 QUANTUM CONTENT: Beyond basic quantum - covers advanced theory Perfect for upper-division quantum mechanics Graduate-level topics explained for undergraduates Rigorous mathematical treatment Complete preparation for advanced physics courses SOPHISTICATED TOPICS INCLUDED: Perturbation theory with real calculations Many-body quantum systems Scattering theory and quantum tunneling Spin-orbit coupling and fine structure Quantum entanglement and Bell's theorem Second quantization introduction ADVANCED PROBLEM SOLUTIONS: Hydrogen atom fine structure calculation Helium atom perturbation theory Quantum harmonic oscillator in electric field Graduate-level problem complexity PERFECT FOR: Physics 107 quantum mechanics units Students planning graduate school in physics Advanced undergraduates needing rigorous treatment Preparation for physics GRE subject test Advanced quantum mechanics made accessible for Physics 107!

Mostrar más Leer menos










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Información del documento

Subido en
26 de agosto de 2025
Número de páginas
25
Escrito en
2025/2026
Tipo
Resumen

Vista previa del contenido

Comprehensive Quantum Mechanics Study Guide
Complete Reference for Advanced Quantum Physics - Original Educational Content


Table of Contents
PART I: FOUNDATIONS OF QUANTUM MECHANICS
1. Wave-Particle Duality and de Broglie Waves
2. Schrödinger Equation and Wave Functions
3. Operators, Observables, and Measurement
4. Uncertainty Principle and Complementarity
5. Time Evolution and Conservation Laws
PART II: EXACTLY SOLVABLE SYSTEMS
6. Particle in a Box (Infinite Square Well)
7. Quantum Harmonic Oscillator
8. Hydrogen Atom and Central Potentials
9. Angular Momentum and Spin
10. Identical Particles and Pauli Exclusion
PART III: APPROXIMATION METHODS
11. Time-Independent Perturbation Theory
12. Variational Method
13. WKB Approximation
14. Time-Dependent Perturbation Theory
PART IV: ADVANCED TOPICS
15. Quantum Tunneling and Barrier Penetration
16. Scattering Theory
17. Quantum Entanglement and Bell's Theorem
18. Many-Body Systems and Second Quantization
PART V: COMPREHENSIVE PROBLEM SETS
19. Worked Examples with Complete Solutions


PART I: FOUNDATIONS OF QUANTUM MECHANICS

,1. Wave-Particle Duality and de Broglie Waves

Historical Development
Black-Body Radiation (Planck, 1900):
Energy quantization: E = ℏω
Planck's constant: h = 6.626 × 10⁻³⁴ J·s, ℏ = h/(2π)
Photoelectric Effect (Einstein, 1905):
Light as particles (photons): E_photon = ℏω = hf
Maximum kinetic energy: KE_max = ℏω - φ (φ = work function)
Compton Scattering (1923):
Photon momentum: p_photon = ℏk = E/c = h/λ
Wavelength shift: Δλ = (h/m_e c)(1 - cos θ)

de Broglie Hypothesis (1924)
Matter Waves: Every particle has an associated wavelength
λ = h/p = h/(mv)
Example: Electron with kinetic energy 100 eV
KE = ½mv² = 100 eV = 1.6 × 10⁻¹⁷ J
v = √(2KE/m) = √(2 × 1.6×10⁻¹⁷/9.11×10⁻³¹) = 5.93 × 10⁶ m/s
λ = h/(mv) = 6.626×10⁻³⁴/(9.11×10⁻³¹ × 5.93×10⁶) = 1.23 × 10⁻¹⁰ m = 0.123 nm
This is comparable to atomic sizes, explaining electron diffraction.

Wave Packets and Group Velocity
Wave Packet: Localized wave formed by superposition
ψ(x,t) = ∫ A(k) e^(i(kx - ωt)) dk
Phase Velocity: v_p = ω/k
Group Velocity: v_g = dω/dk
For free particles: ω = ℏk²/(2m)
v_g = ℏk/m = p/m = v (classical velocity)
Heisenberg Uncertainty Principle emerges:
Δx Δp ≥ ℏ/2


2. Schrödinger Equation and Wave Functions

, Time-Dependent Schrödinger Equation
General Form:
iℏ ∂ψ/∂t = Ĥψ
Where Ĥ is the Hamiltonian operator:
Ĥ = -ℏ²/(2m) ∇² + V(r,t)
One-Dimensional Form:
iℏ ∂ψ/∂t = [-ℏ²/(2m) ∂²/∂x² + V(x,t)] ψ

Time-Independent Schrödinger Equation
For time-independent potentials V(r), separate variables:
ψ(r,t) = ψ(r) e^(-iEt/ℏ)
Time-Independent Equation:
Ĥψ = Eψ
This is an eigenvalue equation:
ψ: eigenfunction (energy eigenstate)
E: eigenvalue (energy)

Wave Function Interpretation
Born Interpretation: |ψ(r,t)|² = probability density
Normalization Condition:
∫|ψ|² d³r = 1

Probability Current Density:
j = (ℏ/2mi)[ψ∇ψ - ψ∇ψ]
Continuity Equation:
∂ρ/∂t + ∇·j = 0 (where ρ = |ψ|²)


Properties of Wave Functions
Requirements for physical acceptability:
1. Single-valued
2. Continuous
3. Finite everywhere
4. Normalizable
5. Continuous first derivative (except at infinite potentials)
$36.37
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
PhysicsMadeEasy

Documento también disponible en un lote

Thumbnail
Package deal
Physics 107 ULTIMATE Bundle: Advanced Physics Quantum Mechanics Complete Guides
-
2 2025
$ 66.68 Más información

Conoce al vendedor

Seller avatar
PhysicsMadeEasy Sveučilšte J.J.Strossmayera
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 meses
Número de seguidores
0
Documentos
3
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes