100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

GT ISYE 6501 Final Exam 2025 | All Questions and Correct Answers | Graded A+ | Verified Answers | Just Released

Puntuación
-
Vendido
-
Páginas
69
Grado
A+
Subido en
25-08-2025
Escrito en
2025/2026

GT ISYE 6501 Final Exam 2025 | All Questions and Correct Answers | Graded A+ | Verified Answers | Just Released

Institución
GT ISYE 6501
Grado
GT ISYE 6501











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
GT ISYE 6501
Grado
GT ISYE 6501

Información del documento

Subido en
25 de agosto de 2025
Número de páginas
69
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

GT ISYE 6501 Final Exam 2025 | All Questions
and Correct Answers | Graded A+ | Verified
Answers | Just Released

Suited for: Variable Selection and/or prediction from feature data. Def: Variable
selection process that can combine forward selection and backward regression ---
------CORRECT ANSWER-----------------Stepwise regression




Suited for Variable Selection and/or prediction from feature data. Def: Method
for limiting the number of variables in a model by limiting the sum of all
coefficients' absolute values. Can be helpful when number of data points is less
than number of factors. ---------CORRECT ANSWER-----------------Lasso Regression




Suited for: experimental design. Def Test of a subset of all possible combinations
of factor values over multiple factors. If chosen well, the desired effects of factors
and factor interaction effects can be obtained. ---------CORRECT ANSWER------------
-----Fractional Factorial Designs




Suited for Classification and/or prediction from feature data Def: Classification
algorithm that uses a boundary to separate the data into two ore more categories
("classes"). Used to Using feature data to predict whether or not something will
happen two time period in the future. ---------CORRECT ANSWER-----------------
Support Vector Machines

,Suited for: Clustering. Def: Clustering algorithm that defines k clusters of data
points, each corresponding to one of k clusters centers selected by the algorithm.
---------CORRECT ANSWER-----------------K-means algorithm




Suited for: Prediction from time-series data. Def: Data smoothing technique in
which older observations are assigned exponentially decreasing weights, so more
emphasis is given to recent observations. Analysis: Using time-series data to
predict the amount of something two time periods in the future. ---------CORRECT
ANSWER-----------------Exponential smoothing




Suited for: Prediction from time-series data. Definition: Autoregressive method
used to model variance in time series data. (Exam) Model used to: Using time-
series data to predict the variance of something two time period in the future. ----
-----CORRECT ANSWER-----------------GARCH




(Exam) Suited for: Prediction from time-series data. Definition: Time series model
that uses differences between observations when data is nonstationary. Also
called Box-Jenkins. (Exam) Model used to: Using time series to predict the amount
of something two time periods in the future ---------CORRECT ANSWER----------------
-ARIMA




(Exam): Suited for: Using feature data to predict the amount and/or probability of
something two time periods in the future. Definition: Regression model where a
data point's response is estimated based on the responses of the 𝑘𝑘 _nearest

,data points with known response. ---------CORRECT ANSWER-----------------K-
nearest neighbor regression




(Exam) Suited for: Using feature data to predict the probability of something
happening and/or weather or not something will happen two time period in the
future. Definition Logistic Regression model that uses an exponential function of
variables to estimate a response that is either between 0 and 1, or must be equal
to 0 or 1. Examples of Logistic Regression): Exam (Q43): Estimate the probability
that a patient survives heart transplant surgery. Another example: estimate the
likelihood that a flight from Atlanta to Detroit will take more than two hours. ------
---CORRECT ANSWER-----------------Logistic regression tree




Tree-based method for regression. After branching to split the data, each subset
is analyzed with its own regression model. ---------CORRECT ANSWER-----------------
Regression Tree




Iterative split (branching) of a data set into more-specific subsets that each are
modeled separately. Often used for classification, regression, and decision-
making. Also, can be used to solve optimization problems. ---------CORRECT
ANSWER-----------------Tree




(Exam) Model to: Using feature data to predict whether or not something will
happen two time periods in the future. ---------CORRECT ANSWER-----------------
Random Support Vector Machine Forest

, A set of multiple trees. Just like in real life. ---------CORRECT ANSWER-----------------
Forest




(Exam) Suited for: Using feature regression to predict the amount of something
two time periods in the future. ---------CORRECT ANSWER-----------------Linear
regression tree




Regression model where the relationships between attributes and a response are
modeled as linear functions. (Examples of Linear Regression): Exam (Q43)
Forecast the number of hotdogs that will be sold at a baseball game. Another
example: Estimate the amount of time it will take to process a certain loan ---------
CORRECT ANSWER-----------------Linear Regression




For each type of data specify if it is or it is not time series:
Definition Time Series: Data that records the same attribute/response at multiple
points in time (often at equal time intervals).
- Characteristics of a day (day of week, season, temperature, amount of rainfall)
that might affect the number of burgers sold: ---------CORRECT ANSWER--------------
---(EXAM) NOT TIME SERIES




For each type of data specify if it is or it is not time series:
Definition Time Series: Data that records the same attribute/response at multiple
points in time (often at equal time intervals).
$27.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
StudyWay Capella University
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
108
Miembro desde
2 año
Número de seguidores
42
Documentos
1873
Última venta
1 semana hace
INVEST AND UNLEASH THE POWER OF KNOWLEDGE NOW!

THIS PREMIUM STUVIA ACCOUNT GIVES YOU ACCESS TO EXCLUSIVE EXAMS, FLASH CARDS, TEST BANKS, AND STUDY GUIDES TAILORED FOR YOUR SUCCESS. ELEVATE YOUR GRADES, ACCELERATE YOUR LEARNING, AND SUPERCHARGE YOUR STUDIES: DIVE INTO A WORLD OF ACADEMIC EXCELLENCE!

4.5

60 reseñas

5
46
4
5
3
3
2
2
1
4

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes