Assignment 4
Due 24 September 2025
, Assignment 04
Due date: Wednesday, 24 September 2025
Question 1
Use the power series method to solve the initial value problem:
𝑦 ″ − 𝑥𝑦 ′ + 4𝑦 = 2, 𝑦(0) = 0, 𝑦 ′ (0) = 1
Answer
Assume the solution is of the form:
∞
𝑦(𝑥) = ∑ 𝑎 𝑛 𝑥𝑛
𝑛=0
Then,
∞ ∞
′ 𝑛−1
𝑦 (𝑥) = ∑ 𝑛 𝑎𝑛 𝑥 = ∑( 𝑛 + 1)𝑎 𝑛+1 𝑥 𝑛
𝑛=1 𝑛=0
∞ ∞
𝑦 ″ (𝑥) = ∑ 𝑛 (𝑛 − 1)𝑎 𝑛 𝑥 𝑛−2 = ∑( 𝑛 + 2)(𝑛 + 1)𝑎 𝑛+2 𝑥 𝑛
𝑛=2 𝑛=0
Substitute into the differential equation:
𝑦 ″ − 𝑥𝑦 ′ + 4𝑦 = 2
∞ ∞ ∞
∑( 𝑛 + 2)(𝑛 + 1)𝑎 𝑛+2 𝑥 𝑛 − 𝑥 ∑( 𝑛 + 1)𝑎 𝑛+1 𝑥 𝑛 + 4 ∑ 𝑎 𝑛 𝑥𝑛 = 2
𝑛=0 𝑛=0 𝑛=0
We simplify the middle term:
∞ ∞ ∞
𝑥 ∑( 𝑛 + 1)𝑎 𝑛+1 𝑥 𝑛 = ∑( 𝑛 + 1)𝑎 𝑛+1 𝑥 𝑛+1 = ∑ 𝑛 𝑎𝑛 𝑥 𝑛
𝑛=0 𝑛=0 𝑛=1
Now all terms become:
, ∞
∑ [(𝑛 + 2)(𝑛 + 1)𝑎 𝑛+2 − 𝑛𝑎𝑛 + 4𝑎𝑛 ] 𝑥 𝑛 = 2
𝑛=0
∞
∑ [(𝑛 + 2)(𝑛 + 1)𝑎 𝑛+2 + (4 − 𝑛)𝑎 𝑛 ] 𝑥 𝑛 = 2
𝑛=0
Right-hand side: 2 = ∑∞ 𝑛
𝑛=0 𝑐𝑛 𝑥 with 𝑐0 = 2, 𝑐𝑛 = 0 for 𝑛 ≥ 1
So,
(𝑛 + 2)(𝑛 + 1)𝑎 𝑛+2 + (4 − 𝑛)𝑎 𝑛 = 𝑐 𝑛
Recurrence relation:
(𝑛 + 2)(𝑛 + 1)𝑎 𝑛+2 = 𝑐 𝑛 − (4 − 𝑛)𝑎 𝑛
Initial values:
Given:
𝑦(0) = 𝑎 0 = 0, 𝑦 ′ (0) = 𝑎 1 = 1
Now compute coefficients:
n = 0:
(2)(1)𝑎2 + (4 − 0)𝑎0 = 2 ⇒ 2𝑎 2 + 4(0) = 2 ⇒ 𝑎 2 = 1
n = 1:
1
(3)(2)𝑎3 + (4 − 1)𝑎1 = 0 ⇒ 6𝑎 3 + 3(1) = 0 ⇒ 𝑎 3 = −
2
n = 2:
1
(4)(3)𝑎4 + (4 − 2)𝑎2 = 0 ⇒ 12𝑎 4 + 2(1) = 0 ⇒ 𝑎 4 = −
6
n = 3:
1 1
(5)(4)𝑎5 + (4 − 3)𝑎3 = 0 ⇒ 20𝑎 5 + 1(− ) = 0 ⇒ 𝑎 5 =
2 40