100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Last Quiz: CS 7643 Deep Learning | Questions with Verified Answers | 100% Correct| Latest 2025/2026 Update - Georgia Institute of Technology.

Puntuación
-
Vendido
-
Páginas
16
Grado
A+
Subido en
27-03-2025
Escrito en
2024/2025

Policy Iteration Policy Evaluation: Compute V(pi) Policy Refinement: Greedily change action as per V(Pi) at next states Why do Policy Iteration: PI_i often converges to PI* sooner than V_PI to V_PI* - thus requires few iterations Deep Q-Learning - Q(s, a; w, b) = w_a^t * s + b_a MSE Loss := (Q_new(s, a) - (r + y*max_a(Q_old(s', a)))^2 - using a single Q function makes loss function unstable --> use two Q-tables (NNs) - Freeze Q_old and update Q_new - Set Q_old = Q_new at regular intervals Reinforcement learning Sequential decision making in an environment with evaluative feedback Environment: may be unknown, non-linear, stochastic and complex Agent: learns a policy to map states of the environments to actions - seeks to maximize long-term reward RL: Evaluative Feedback - Pick an action, receive a reward - No supervision for what the correct action is or would have been (unlike supervised learning) RL: Sequential Decisions - Plan and execution actions over a sequence of states - Reward may be delayed, requiring optimization of future rewards (long-term planning) Signature Challenges in RL Evaluative Feedback: Need trial and error to find the right action Last Quiz: CS 7643 Deep Learning | Questions with Verified Answers | 100% Correct| Latest 2025/2026 Update - Georgia Institute of Technology.

Mostrar más Leer menos
Institución
CS 7643 Deep Learning
Grado
CS 7643 Deep Learning










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
CS 7643 Deep Learning
Grado
CS 7643 Deep Learning

Información del documento

Subido en
27 de marzo de 2025
Número de páginas
16
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

  • last quiz cs 7643

Vista previa del contenido

Last Quiz: CS 7643 Deep Learning | Questions
i,- i,- i,- i,- i,- i,- i,- i,-




with Verified Answers | 100% Correct| Latest
i,- i,- i,- i,- i,- i,- i,-




2025/2026 Update - Georgia Institute of i,- i,- i,- i,- i,- i,-




Technology.

Policy Iteration i,- i,-i,- i,- Policy Evaluation: Compute V(pi) i,- i,- i,-




Policy Refinement: Greedily change action as per V(Pi) at next
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-



states


Why do Policy Iteration: PI_i often converges to PI* sooner than
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-



V_PI to V_PI*
i,- i,-




- thus requires few iterations
i,- i,- i,- i,-




Deep Q-Learning i,- i,-i,- i,- - Q(s, a; w, b) = w_a^t * s + b_a
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-




MSE Loss := (Q_new(s, a) - (r + y*max_a(Q_old(s', a)))^2
i,- i,- i,- i,- i,- i,- i,- i,- i,-




- using a single Q function makes loss function unstable
i,- i,- i,- i,- i,- i,- i,- i,- i,-




--> use two Q-tables (NNs)
i,- i,- i,- i,-




- Freeze Q_old and update Q_new
i,- i,- i,- i,- i,-




- Set Q_old = Q_new at regular intervals
i,- i,- i,- i,- i,- i,- i,-

,Reinforcement learning Sequential decision making in an i,- i,-i,- i,- i,- i,- i,- i,- i,-



environment with evaluative feedback i,- i,- i,-




Environment: may be unknown, non-linear, stochastic and i,- i,- i,- i,- i,- i,- i,-



complex
Agent: learns a policy to map states of the environments to
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-



actions
- seeks to maximize long-term reward
i,- i,- i,- i,- i,-




RL: Evaluative Feedback
i,- i,- i,-i,- i,- - Pick an action, receive a reward
i,- i,- i,- i,- i,- i,-




- No supervision for what the correct action is or would have
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-



been (unlike supervised learning)
i,- i,- i,-




RL: Sequential Decisions
i,- i,- i,-i,- i,- - Plan and execution actions over a
i,- i,- i,- i,- i,- i,- i,-



sequence of states i,- i,-




- Reward may be delayed, requiring optimization of future
i,- i,- i,- i,- i,- i,- i,- i,- i,-



rewards (long-term planning) i,- i,-




Signature Challenges in RL Evaluative Feedback: Need trial
i,- i,- i,- i,-i,- i,- i,- i,- i,- i,-



and error to find the right action
i,- i,- i,- i,- i,- i,-




Delayed Feedback: Actions may not lead to immediate reward
i,- i,- i,- i,- i,- i,- i,- i,-

, Non-stationarity: Data distribution of visited states changes when i,- i,- i,- i,- i,- i,- i,- i,-



the policy changes
i,- i,-




Fleeting Nature: of online data (may only see data once)
i,- i,- i,- i,- i,- i,- i,- i,- i,-




MDP i,-i,- i,- Framework underlying RL i,- i,-




S: Set of states
i,- i,- i,-




A: Set of actions
i,- i,- i,-




R: Distribution of Rewards
i,- i,- i,-




T: Transition probabiliity
i,- i,-




y: Discount property
i,- i,-




Markov Property: Current state completely characterizes state of
i,- i,- i,- i,- i,- i,- i,- i,-



the environment
i,-




RL: Equations relating optimal quantities
i,- i,- i,- i,- i,-i,- i,- 1. V*(S) =
i,- i,- i,-



max_a(Q*(s, a) i,-




2. PI*(s) = argmax_a(Q*(s, a)
i,- i,- i,- i,-




V*(S) i,-i,- i,- max_a (sum_(s') { p(s'|s, a) [r(s, a) + yV*(s')] } )
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
AcademiaExpert Chamberlain College Of Nursing
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1708
Miembro desde
5 año
Número de seguidores
762
Documentos
4001
Última venta
1 día hace
EXAMS, STUDY GUIDES, ESSAYS, NOTES & GOOD GRADES

Hello, my name is Archie. I am an experienced tutor and I am here to provide you with all your study solutions ranging from exams, study guides, essays, notes and just to make school a little bit easier for you. Engage me if you have any questions about your course and I will swiftly and gladly assist. Good luck with studying and all the best going forward.

3.8

433 reseñas

5
200
4
83
3
75
2
25
1
50

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes