100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Math sample paper

Puntuación
-
Vendido
-
Páginas
6
Grado
A
Subido en
25-03-2025
Escrito en
2024/2025

Exam of 6 pages for the course Cbse at Cbse (Math)

Institución
Cbse
Grado
Cbse









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Cbse
Grado
Cbse

Información del documento

Subido en
25 de marzo de 2025
Número de páginas
6
Escrito en
2024/2025
Tipo
Examen
Contiene
Solo preguntas

Temas

Vista previa del contenido

KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD-32
SAMPLE PAPER TEST 01 FOR BOARD EXAM 2024

SUBJECT: MATHEMATICS MAX. MARKS : 80
CLASS : X DURATION : 3 HRS
General Instruction:
1. This Question Paper has 5 Sections A-E.
2. Section A has 20 MCQs carrying 1 mark each.
3. Section B has 5 questions carrying 02 marks each.
4. Section C has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the
values of 1, 1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and
2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks
questions of Section E
8. Draw neat figures wherever required. Take π =22/7 wherever required if not stated.
SECTION – A
Questions 1 to 20 carry 1 mark each.

1. In a formula racing competition, the time taken by two racing cars A and B to complete 1 round of
the track is 30 minutes and p minutes respectively. If the cars meet again at the starting point for the
first time after 90 minutes and the HCF (30, p) = 15, then the value of p is
(a) 45 minutes (b) 60 minutes (c) 75 minutes (d) 180 minutes

2. The solution of the following pair of equation is:
x – 3y = 2, 3x – y = 14
(a) x = 5, y = 1 (b) x = 2, y = 3 (c) x = 1, y = 2 (d) x = 1, y = 4

3. If two positive integers a and b are written as a = x3y2 and b = xy3, where x and y are prime
numbers, then the HCF (a, b) is:
(a) xy (b) xy2 (c) x3y3 (d) x2y2

4. The ratio in which x-axis divides the join of (2, -3) and (5, 6) is:
(a) 1: 2 (b) 3 : 4 (c) 1: 3 (d) 1: 5

5. The 11th and 13th terms of an AP are 35 and 41 respectively, its common difference is
(a) 38 (b) 32 (c) 6 (d) 3

6. A medicine-capsule is in the shape of a cylinder of radius 0.25 cm with two hemispheres stuck to
each of its ends. The length of the entire capsule is 2 cm. What is the total surface area of the
capsule? (Take π as 3.14)




(a) 0.785 cm2 (b) 0.98125 cm2 (c) 2.7475 cm2 (d) 3.14 cm2

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1-

, 7. A 1.6 m tall girl stands at distance of 3.2 m from a lamp post and casts shadow of 4.8 m on the
ground, then the height of the lamp post is
(a) 8 m (b) 4 m (c) 6 m (d) 8/3 m

8. A tangent is drawn from a point at a distance of 17 cm of circle (O, r) of radius 8 cm. The length of
tangent is
(a) 5 cm (b) 9 cm (c) 15 cm (d) 23 cm

9. The runs scored by a batsman in 35 different matches are given below:
Runs Scored 0-15 15-30 30-45 45-60 60-75 75-90
Frequency 5 7 4 8 8 3
The lower limit of the median class is
(a) 15 (b) 30 (c) 45 (d) 60

10. If in two triangles, DEF and PQR, ∠ =∠ and ∠ =∠ , then which of the following is not true?
EF DF EF DE DE DF EF DE
(a)  (b)  (c)  (d) 
PR PQ RP PQ QR PQ RP QR

11. In the given figure, if AB = 14 cm, then the value of tan B is:




4 14 5 13
(a) (b) (c) (d)
3 3 3 3

12. Two cubes each with 6 cm edge are joined end to end. The surface area of the resulting cuboid is
(a) 180 ² (b) 360 ² (c) 300 ² (d) 260 ²

13. A cone, a hemisphere and cylinder are of the same base and of the same height. The ratio of their
volumes is
(a) 1 : 2 : 3 (b) 2 : 1 : 3 (c) 3 : 1 : 2 (d) 3 : 2 : 1

14. The probability of getting a bad egg in a lot of 400 is 0.035. The number of bad eggs in the lot is
(a) 7 (b) 14 (c) 21 (d) 28

15. If 3 sin θ – cos θ = 0 and 0° < θ < 90°, find the value of θ.
(a) 30° (b) 45° (c) 60° (d) 90°

16. Find the value of k for which the equation x2 + k(2x + k − 1)+ 2 = 0 has real and equal roots.
(a) 2 (b) 3 (c) 4 (d) 5

17. In the below figure, the pair of tangents AP and AQ drawn from an external point A to a circle with
centre O are perpendicular to each other and length of each tangent is 5 cm. Then radius of the
circle is
(a) 10 cm (b) 7.5 cm (c) 5 cm (d) 2.5 cm




Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 2-
$7.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
kimiris

Conoce al vendedor

Seller avatar
kimiris
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
9 meses
Número de seguidores
0
Documentos
59
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes