100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Physics for Scientists & Engineers with Modern Physics, Global Edition, 5th edition Douglas C. Giancoli

Puntuación
-
Vendido
-
Páginas
154
Grado
A+
Subido en
15-03-2025
Escrito en
2024/2025

Solution Manual for Physics for Scientists & Engineers with Modern Physics, Global Edition, 5th edition Douglas C. GiancoliSolution Manual for Physics for Scientists & Engineers with Modern Physics, Global Edition, 5th edition Douglas C. GiancoliSolution Manual for Physics for Scientists & Engineers with Modern Physics, Global Edition, 5th edition Douglas C. GiancoliSolution Manual for Physics for Scientists & Engineers with Modern Physics, Global Edition, 5th edition Douglas C. GiancoliSolution Manual for Physics for Scientists & Engineers with Modern Physics, Global Edition, 5th edition Douglas C. GiancoliSolution Manual for Physics for Scientists & Engineers with Modern Physics, Global Edition, 5th edition Douglas C. GiancoliSolution Manual for Physics for Scientists & Engineers with Modern Physics, Global Edition, 5th edition Douglas C. Giancoli

Mostrar más Leer menos
Institución
Modern Physics With Modern_
Grado
Modern Physics with Modern_











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Modern Physics with Modern_
Grado
Modern Physics with Modern_

Información del documento

Subido en
15 de marzo de 2025
Número de páginas
154
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUAL Modern Physics with
aa aa aa aa




Modern Computational Methods: for Scientists
aa aa aa aa aa




and Engineers 3rd Edition by Morrison
aa aa aa aa aa aa




Chapters
aa aa




1- 15aa aa


aa aa

,Table of contents k9 k9 aa

aa

1. The Wave-Particle Duality aa
k9 k9 k9

aa

2. The Schrödinger Wave Equation aa
k9 k9 k9 k9

aa

3. Operators and Waves aa
k9 k9 k9

aa

4. The Hydrogen Atom aa
k9 k9 k9

aa

5. Many-Electron Atoms aa
k9 k9

aa

6. The Emergence of Masers and Lasers aa
k9 k9 k9 k9 k9 k9

aa

7. Diatomic Molecules aa
k9 k9

aa

8. Statistical Physics aa
k9 k9

aa

9. Electronic Structure of Solids aa
k9 k9 k9 k9

aa

10. Charge Carriers in Semiconductors aa
k9 k9 k9 k9

aa

11. Semiconductor Lasers aa
k9 k9

aa

12. The Special Theory of Relativity aa
k9 k9 k9 k9 k9

aa

13. The Relativistic Wave Equations and General Relativity aa
k9 k9 k9 k9 k9 k9 k9

aa

14. Particle Physics aa
k9 k9

aa

15. Nuclear Physics aa
k9 k9




aa
aa aa
aa

1 aa


The k aa9 aa Wave-Particle k aa9 aa Duality k aa9 aa - k aa9 aa Solutions aa
aa
aa
aa
aa
aa
aa

1. The energy of photons in terms of the wavelength of light is
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k



9 given by Eq. (1.5). Following Example
k9 k9 k9 k9 k9 k aa9 aa 1.1 and substituting λ aa = 200 eV gives:
k9 k9 k9 k 9 k9 k9 k9

aa


aa hc aa1240 aa aaeV aa aa· nm aa k 9 k 9 k9



= aa = 6.2 eV aa k9 k9



Ephoton = aaλ aa 200 nm aa k9 k9




2. The k aa9 aa energy k aa9 aa of k aa9 aa the k aa9 aa beam k aa9 aa each k second
aa9 aa k aa9 aais: aa aa power aa 100 W aa
k9




= aa= 100 J aaEtotal = aatime aa1 s
k9 k9 k9 k9

aa


The number of photons comes from the total energy divided b
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9



aay the energy of each photon (see Problem 1). The photon’s ener
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9


−1
aagy must be converted to Joules using the constant 1.602 × 10
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9


9 J/eV , see Example 1.5. The result is: aa
aa k9 k9 k9 k9 k9 k9 k9 k9




N aa= E aatotal k9 k aa9 aa = aa100 J aa= 1.01 × 1020 aaphotons aaEpho aa aa
k9 k9 k9 k9

, −
ton aa 9.93 × 10 19 aa k9 k9




for aa aathe aa
k 9 k 9 aanumber aa aaof aa aaphotons aa aastriking k 9 k 9 k 9 k aa9 aa the k aa9 aa surface k aa9 aa each k aa9

aasecond. aa




3. We are given the power of the laser in milliwatts, where 1 mW
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9


−3
aak9 = 10 W . The power may be expressed as: 1 W = 1 J/s. Foll
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9



aa owing Example 1.1, the energy of a single photon is: aa
k9 k9 k9 k9 k9 k9 k9 k9 k9




aa 1240 aa aaeV aa aa· nm aa k 9 k 9 k9



hc aa= 1.960 eV aa k9 k9 k9



Ephoton aa aa= 632.8 nm k 9 k9 aa




aa aa = aaλ aa k 9 k 9



We now aaconvert to SI units (see aaExample aa aa1.5): aa
k9 k9 k9 k9 k9 k9 k9 k 9




1.960 eV × 1.602 × 10−19 J/eV aa aa= 3.14 × 10−19 J aa
k9 k9 k9 k9 k9 k9 k 9 k9 k9 k9 k9




Following the same procedure as Problem 2: aa k9 k9 k9 k9 k9 k9




1 × 10−3 J/s
k9 k9 k9
aa
15 k aa9 aa photons aa
Rate of k9 k aa9 aa emission = k9 k aa9 aa 3.14 k9 k9 −19 k aa9 aa J/photon k aa9 aa = 3.19 × 10 k9 k9 k9 aa s aa

× 10 aa



2
aa

4. The maximum kinetic energy of photoelectrons is found usi
k9 k9 k9 k9 k9 k9 k9 k9




ng Eq. (1.6) and the work functions, W, of the metals are give
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9



aan in Table 1.1. Following Problem aa aa1, aa aaEphoton = hc/λ = 6.20 aa aaeV
k9 k9 k9 k9 k9 k 9 k 9 k9 k9 k9 k9 k 9 k9



aa. aa aaFor aa aapart aa aa(a), aa aaNa aa aahas aa aaW aa aa= 2.28 aa aaeV : aa
k 9 k 9 k 9 k 9 k 9 k 9 k 9 k9 k 9 k9




(KE)max = 6.20 eV − 2.28 eV aa aa= 3.92 eV aa
k9 k9 k9 k9 k9 k9 k 9 k9 k9




Similarly, for Al metal in part (b), W aa aa= 4.08 eV aa aagiving (KE)max = 2.12 e aaV aa
k9 k9 k9 k9 k9 k9 k9 k 9 k9 k9 k 9 k9 k9 k9 k9



and for Ag metal in part (c), W = 4.73 eV , giving (KE)max = 1.47 eV . aa
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9




5. This problem again concerns the photoelectric effect. As in Pr
k9 k9 k9 k9 k9 k9 k9 k9 k9



aa oblem 4, we use Eq. (1.6): aa k9 k9 k9 k9 k9




aa (KE)max aa= aa hc − k9 k9 k9



λ
aaW k9




where aa aaW aa aais aa aathe aa aawork aa aafunction aa aaof aa aathe aa aamaterial aa aaand
k 9 k 9 k 9 k 9 k 9 k 9 k 9 k 9 k 9 k the
aa9 aa k aa9

aaterm aa aahc k 9




/λ aa aadescribes the energy of the incoming photons. Solving for the la
k 9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9



aatter: aahc aa λ aa aa= (KE) + W aa aa= 2.3 eV aa aa+ 0.9 eV aa aa= 3.2 eV aa k 9 k9 maxk9 k9 k 9 k9 k9 k 9 k9 k9 k 9 k9 k9




Solving Eq. (1.5) for the wavelength: aa k9 k9 k9 k9 k9




1240 k aa9 aa eV aa aa· nm aa k 9 k9

, λ = aa
k9
= 387.5 nm aa k9 k9



3.2 k aa9

aae



V aa
6. A potential energy of 0.72 eV is needed to stop the flow of electro
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9



aans. Hence, (KE)max of the photoelectrons can be no more than 0.7
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9



aa2 eV. Solving Eq. (1.6) for the work function: aa
k9 k9 k9 k9 k9 k9 k9 k9




hck9 aa k aa9 aa — aa 1240 k aa9 aa eV aa aa· aa— 0.72
k 9 k9 k9 k aa9 aa eV aa aa= 1.98
k 9 k9 k aa9 aa eV aa
W aa=
λ nm aa
(KE)max k



9 = aa aa
aa

460 nm aa k9




7. Reversing aa aathe k 9 k aa9 aa procedure k aa9 aa from k aa9 aa Problem k aa9 aa 6, k aa9 aa we k aa9 aa start k with
aa9 aa k



aa aaEq. aa aa(1.6): aa
9 k 9




−W
aa k9 hc k aa9 aa k9 k aa9 1240 k aa9 aa eV aa aa· aa— 1.98 k 9 k9 k9 k aa9 aa eV aa aa= 3.19
k 9 k9 k eV aa
aa9 aa


(KE)max aa= aa
= aa nm aa
λ aa aa aa


240 nm aa k9




Hence, a stopping potential of 3.19 eV prohibits the electrons fro
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9



aam reaching the anode. aa
k9 k9 k9




8. Just aa aaat aa aathreshold, aa aathe aa aakinetic aa aaenergy aa aaof
k 9 k 9 k 9 k 9 k 9 k 9 k aa9 aa the k aa9 aa electron k i
aa9 aa

aas aa aazero. aa aaSetting (KE)max = 0 aa aain aa aaEq. aa aa(1.6), aa
k 9 k 9 k9 k9 k9 k 9 k 9 k 9




hc aa1240 aa aaeV aa aa· aa
k9 k 9 k 9 k9




W aa= aa λ0 aa= aa nm aa = 3.44 k9 k aa9 aa eV aa

aa aa

360 nm aa k9



3 aa


9. A frequency of 1200 THz is equal to 1200 × 1012 Hz. Using Eq. (1.10), aa
k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9 k9




Ephoton = hf = 4.136 × 10−15 eV aa aa· s × 1.2 × 1015 Hz = 4.96 eV aa
k9 k9 k9 k9 k9 k9 k9 k 9 k9 k9 k9 k9 k9 k9 k9 k9 k9
$16.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
nursestuvate NURSING
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
128
Miembro desde
1 año
Número de seguidores
11
Documentos
6772
Última venta
3 semanas hace
COMPLETE VICTORY

OUR MATERIALS REFLECT THE LATEST EXAM FORMATS & CONTENT WITH DETAILED EXPLANATION TO HELP YOU GRASP CHALLENGING CONCEPTS ... TEST YOUR KNOWLEDGE WITH OUR PRACTICE EXAMS DESIGNED TO SIMULATE THE REAL TEST EXPERIENCE ... I ASSURE GOOD GRADE IF YOU USE MY WORK...

3.5

15 reseñas

5
7
4
1
3
2
2
2
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes