100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Calculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% Pass

Puntuación
-
Vendido
-
Páginas
6
Grado
A+
Subido en
03-01-2025
Escrito en
2024/2025

Calculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% Pass

Mostrar más Leer menos
Institución
Math
Grado
Math









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Math
Grado
Math

Información del documento

Subido en
3 de enero de 2025
Número de páginas
6
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Math 213 – Calculus III Practice Exam 2 Solutions Fall 2002

1. Let
2
g(x, y, z) = e−(x+y) + z 2 (x + y).

(a) What is the instantaneous rate of change of g at the point (2, −2, 1) in the direction of
the origin?
We want the directional derivative of g at (2, −2, 1) in the direction of the origin. A vector in
this direction is −2~i + 2~j − ~k, and a unit vector in this direction is ~u = √19 (−2~i + 2~j − ~k) =
³ ´
2~ 2~ 1~
− 3 i + 3 j − 3 k . The gradient of g is
³ 2
´ ³ 2
´
grad g(x, y, z) = −2(x + y)e−(x+y) + z 2 ~i + −2(x + y)e−(x+y) + z 2 ~j + (2z(x + y)) ~k,

and in particular
grad g(2, −2, 1) = ~i + ~j.
Then the instantaneous rate of change of g in the direction ~u at the point (2, −2, 1) is
³ ´ µ 2 2~ 1 ~

~ ~ ~
g~u (2, −2, 1) = grad g(2, −2, 1) · ~u = i + j · − i + j − k = 0.
3 3 3

(b) Suppose that a piece of fruit is sitting on a table in a room, and at each point (x, y, z)
in the space within the room, g(x, y, z) gives the strength of the odor of the fruit. Fur-
thermore, suppose that a certain bug always flies in the direction in which the fruit odor
increases fastest. Suppose also that the bug always flies with a speed of 2 feet/second.
What is the velocity vector of the bug when it is at the position (2, −2, 1)?
Since the bug flies in the direction in which the fruit odor increases fastest, it flies in the
direction of grad g. It always has a speed of 2, so the velocity vector at (2, −2, 1) is

grad g(2, −2, 1) 2
2 = √ (~i + ~j).
kgrad g(2, −2, 1)k 2


2. The path of a particle in space is given by the functions x(t) = 2t, y(t) = cos(t), and
z(t) = sin(t). Suppose the temperature in this space is given by a function H(x, y, z).

(a) Find dH
dt , the rate of change of the temperature at the particle’s position. (Since the
actual function H(x, y, z) is not given, your answer will be in terms of derivatives of H.)
dH ∂H dx ∂H dy ∂H dz
dt = ∂x dt + ∂y dt + ∂z dt = 2 ∂H ∂H ∂H
∂x − sin t ∂y + cos t ∂z
∂H ∂H ∂H dH
(b) Suppose we know that at all points, ∂x > 0, ∂y < 0 and ∂z > 0. At t = 0, is dt
positive, zero, or negative?
dH
At t = 0, dt = 2 ∂H
∂x +
∂H
∂z > 0.




1

, 3. Let
f (x, y) = x3 − xy + cos(π(x + y)).

(a) Find a vector normal to the level curve f (x, y) = 1 at the point where x = 1, y = 1.
The gradient of f is normal to the level curve at each point. We find
grad f (x, y) = (3x2 − y − π sin(π(x + y)))~i + (−x − π sin(π(x + y)))~j, and
grad f (1, 1) = 2~i − ~j.
(b) Find the equation of the line tangent to the level curve f (x, y) = 1 at the point where
x = 1, y = 1.
The line is
2(x − 1) − (y − 1) = 0, or 2x − y = 1.

(c) Find a vector normal to the graph z = f (x, y) at the point x = 1, y = 1.
The graph is the level surface g(x, y, z) = 0 of the function g(x, y, z) = f (x, y)−z. The gradi-
ent of g is normal to the level surface at each point. We have grad g(x, y, z) = grad f (x, y)−~k.
Now f (1, 1) = 1, so a vector normal to the graph at (1, 1, 1) is

grad g(1, 1, 1) = grad f (1, 1) − ~k = 2~i − ~j − ~k.

(d) Find the equation of the plane tangent to the graph z = f (x, y) at the point x = 1,
y = 1.
The plane is 2(x − 1) − (y − 1) − (z − 1) = 0, or 2x − y − z = 0.

4. Let
f (x, y) = (x − y)3 + 2xy + x2 − y.

(a) Find the linear approximation L(x, y) near the point (1, 2).
First get the numbers: f (1, 2) = −1 + 4 + 1 − 2 = 2,
fx (x, y) = 3(x − y)2 + 2y + 2x, fx (1, 2) = 3 + 4 + 2 = 9,
fy (x, y) = −3(x − y)2 + 2x − 1, fy (1, 2) = −3 + 2 − 1 = −2.
Then L(x, y) = f (1, 2) + fx (1, 2)(x − 1) + fy (1, 2)(y − 2) = 2 + 9(x − 1) − 2(y − 2).
(b) Find the quadratic approximation Q(x, y) near the point (1, 2).
We need some more numbers:
fxx (x, y) = 6(x − y) + 2, fxx (1, 2) = −6 + 2 = −4,
fxy (x, y) = −6(x − y) + 2, fxy (1, 2) = 6 + 2 = 8,
fyy (x, y) = 6(x − y), fxy (1, 2) = −6.
Then

fxx (1, 2) fyy (1, 2)
Q(x, y) = L(x, y) + (x − 1)2 + fxy (1, 2)(x − 1)(y − 2) + (y − 2)2
2 2
= 2 + 9(x − 1) − 2(y − 2) − 2(x − 1)2 + 8(x − 1)(y − 2) − 3(y − 2)2 .




2
$13.39
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
sudoexpert119

Documento también disponible en un lote

Thumbnail
Package deal
Calculus 3 Exams With Answers, guaranteed 100% Pass
-
5 2025
$ 61.55 Más información

Conoce al vendedor

Seller avatar
sudoexpert119 Harvard University
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
11 meses
Número de seguidores
0
Documentos
411
Última venta
-
A+ Smart Scholars Studio

Ace your exams with trusted, expertly crafted resources built for top-tier results.

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes