100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Otro

Experimental Design and Analysis - Practise Exam with answers

Puntuación
-
Vendido
-
Páginas
10
Subido en
31-12-2024
Escrito en
2023/2024

A practise exam with answers for the course Experimental Design and Analysis, MSc AI.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
31 de diciembre de 2024
Número de páginas
10
Escrito en
2023/2024
Tipo
Otro
Personaje
Desconocido

Temas

Vista previa del contenido

Question 1
Birthweights a) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. Denote the underlying mean birthweight by μ. Suppose we implemented the following
commands in R:
> mean(birthweight)
2913.293
> var(birthweight)
486506.6
> qnorm(0.96)
1.750686
> qnorm(0.98)
2.053749

Assuming normality, construct a bounded 96% confidence interval (CI) for μ:
[2805, 3010.4] - [2806.19, 3015.5] - [2808.08, 3018.5] - [2800.19, 3011.5]
. Evaluate the sample size needed to provide that the length of the 96%-CI is at most 100:
830 - 813 - 798 - 821 - 578
. Would it be possible to compute a bootstrap 92%-CI for μ by using the sample birthweights?
Not relevant - yes - no

Question 2
Birthweights b) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. Denote the underlying mean birthweight by μ. An expert claims that the mean
birthweight is bigger than 2800 gram. We want to verify this claim by using relevant test(s).

Choose the correct claim(s).
We can use the following sign test
binom.test(sum(birthweight<=2800),n,0.5,alt="l").
We can use the following sign test
binom.test(sum(birthweight>2800),n,0.5,alt="g").
Under normality, we can use the following t-test t.test(birthweight,mu=2800,alt="l")
Under normality, we can use the following t-test
t.test(birthweight,mu=2800,alt="g")
We cannot perform a sign tests for this problem.
We can use the following sign test binom.test(sum(birthweight<2800),n,0.5,alt="g").

Question 3
Birthweights c) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. Denote the underlying mean birthweight by μ. An expert claims that the mean
birthweight is bigger than 2800 gram. We want to verify this claim by using relevant test(s).

Suppose we have two tests to verify the claim of the expert. One test has the significance
alpha=0.3 and the power 0.78, the second test has the significance alpha=0.4 and the error of
the second kind 0.25. Which of the two tests is preferable?

, 1st - 2nd - cannot say
.

Suppose we use a t-test to verify the claim of the expert, then
We can estimate - we cannot estimate - we can compute
its power for
All parameter values from the null hypothesis - All parameter values - All parameter values
from the alternative hypothesis
.

Question 4
Birthweights d) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. Let p be the probability that birthweight of a newborn baby is less than 2600 gram.
Suppose we implemented the following command in R:
> p=sum(t<2600)/n; p
0.3522727

Suppose further that, using asymptotic normality, the expert computed the left end pl=0.25 of
the confidence interval [pl,pr] for p. We recover the whole confidence interval as
[0.15, 0.39] - [0.25, 0.41] - [0.23, 0.45] - [0.19, 0.44]
(rounded to two decimal digits) and its confidence level we recover as
q=(p+0.25)/sqrt(p*(1-p)/n); 1-2*(1-pnorm(q))
q=(p+0.25)/sqrt(p*(1-p)/n); 1-2*(1-qnorm(q))
q=(p-0.25)/sqrt(p*(1-p)/n); 1-(1-pnorm(q))
q=(p-0.25)/sqrt(p*(1-p)/n); 1-2*(1-pnorm(q))


Question 5
Birthweights e) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. An expert reports that there were 34 male and 28 female babies among 62 who
weighted less than 2600 gram, and 61 male and 65 female babies among the remaining 126
babies. The expert claims that the mean weight is different for male and female babies. We
want to verify this claim by an appropriate test. To test the claim, represent the data in the form
of contingency table.

male female
weight<2600g V1 V2
weight>2600g V3 V4

Determine the values of the above contingency table.
V1= 28 - 61 - 65 - 68 - 34
V2= 28 - 61 - 65 - 68 - 34
V3= 28 - 61 - 65 - 68 - 34
V4= 28 - 61 - 65 - 68 - 34
$9.68
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
tararoopram Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
3 año
Número de seguidores
2
Documentos
38
Última venta
2 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes