100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

College aantekeningen Advanced Research Methods (ARM)

Puntuación
-
Vendido
-
Páginas
27
Subido en
09-12-2024
Escrito en
2024/2025

Hoorcollege aantekeningen Advanced reserach methods

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
9 de diciembre de 2024
Número de páginas
27
Escrito en
2024/2025
Tipo
Notas de lectura
Profesor(es)
Dr. vivian reckers-droog
Contiene
Todas las clases

Temas

Vista previa del contenido

Lecture – Advanced Research
Methods
Inhoudsopgave
Lecture 1 – Introduction to causal inference...................................................................1
Knowledge video 1 – DAG (Directed Acyclic Graphs)...................................................8
Lecture 2 – OLS and moderations.................................................................................10
Knowledge video 2: OLS regression...........................................................................13
Knowledge Video 3 – Logistic Regression..................................................................13
Knowledge Video 4 – OLS vs. Logistic Regression......................................................15
Knowledge Video 5 – Table 2 Fallacy..........................................................................16
Lecture 3 – OLS and Logistic Regression.......................................................................18
Lecture 4 – Qualitative Methods...................................................................................20
Knowledge video 6 – Discourse analysis in healthcare..............................................21
Knowledge video 7 – Taking discourse into analysis into the field.............................22
Knowledge Video – Ethnography in healthcare research..............................................23
Lecture – Organizational ethnography..........................................................................24
How to assess quality in qualitative research...............................................................25

Lecture 1 – Introduction to causal inference
Learning Goals:




Why examine (statistical) associations?
1. Descriptions: patterns X and Y
2. Predicition: Y given X (characteristics of something on the research
question (RQ))
3. Causal inference: Effect X on Y

,Example
Would you buy this foundation or not?
- Small sample size (n=41)
Is it always a problem?
 not always, depends on what you want to know.
- Study performed or financed by commercial company
Is this a problem?  Not always, but it can be frowned
upon. Make sure to have a contract which says you can
publish anything, positive and negative
- No control group
Is it a problem?
 Essential data is missing, what would happen
without treatment, potential regression to the mean



What do we want to know in causal inreference:
- We are not interested in the outcome (Y, 70% less imperfections) but
- We are interested in the role of the treatment (X, without the
foundation) in achieving this outcome

Conclusion
- We do not have that information
- No causal claim can be made base on L’Oréal study

Causal effect
Formal definition by Hernan and Robins (2020)
In an individual, a treatment has a causal effect if the outcome
under treatment 1 would be different from the outcome under treatment
2.

To assess this, we need information on:
 what would have happened, had this not happened

Assume that we have this information in relation to the foundation study:
- Woman A treated with the foundation: 2 bad spots
- Had Woman A not been treated with the foundation: 5 bad spots
 Individual treatment effect: -3 spots (or 60% less imperfections)
 Average treatment effect: average of individual effects in a population

Formal notation of a causal effect:



Y = outcome
A = treatment

, i = individual
1 = yes (received treatment)
0 = no (received no treatment)
Does not equal




Not all potential outcomes are observed
- Counterfactual outcome: potential outcome that is not observed
because the subject did not experience the treatment (counter the
fact)
- Potential outcome is factual (or observed) for some subjects, and
counterfactual (or not observed) for others

Fundamental problem in causal inference
Individual causal effect cannot be observed:
- No information on counterfactual
- Except under extremely strong (and generally unreasonable)
assumptions
Average causal effect cannot be determined based on individual estimates
- Causal inference as a missing data problem

So, we need a different approach to estimate causal effects.

Identifiability conditions
Average causal effect van be determined if, and only if, 3 identifiability
conditions are met:
1. Positivity
2. Consistency
3. Exchangeability
If all conditions are met (and an association is found in the data), the
association between exposure and outcome is an unbiased estimate of a
causal effect and you can make a causal claim

Positivity
$7.57
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
jaenevanleest Haagse Hogeschool
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
30
Miembro desde
6 año
Número de seguidores
18
Documentos
16
Última venta
1 mes hace

2.8

5 reseñas

5
2
4
0
3
0
2
1
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes