100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Components of the computer

Puntuación
-
Vendido
-
Páginas
9
Subido en
08-12-2024
Escrito en
2024/2025

Course Title: Introduction to Computers Purpose: The lecture notes serve as a reference guide for understanding the basic principles of computing, focusing on hardware, software, programming, and their real-world applications. Target Audience: Students or individuals new to computers, aiming to grasp foundational concepts. --- Outline for Lecture Notes 1. Introduction to Computers Definition of a Computer History and Evolution Importance of Computers in Modern Life 2. Basic Computer Architecture Components of a Computer System Input Devices (e.g., Keyboard, Mouse) Output Devices (e.g., Monitor, Printer) Central Processing Unit (CPU) Storage Devices (HDD, SSD, Cloud) Binary System and Data Representation

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
8 de diciembre de 2024
Número de páginas
9
Escrito en
2024/2025
Tipo
Notas de lectura
Profesor(es)
Williams
Contiene
Todas las clases

Temas

Vista previa del contenido

MODULE 3
Boolean Algebra, Fundamentals of Truth tables and Precedence
Algebra
Algebra means reunion on broken parts. It is the study of mathematical symbols and rules for
manipulating the symbols. Algebra can be regarded as elementary, abstract or modern depending
on the level or field of study.

Algebra has computations similar to arithmetic but with letters standing for numbers which
allows proofs of properties that are true regardless of the numbers involved. For example,
quadratic equation: ax2 + bx + c = 0 where a, b, c can be any number (a≠0). Algebra is used in
many studies, for example, elementary algebra, linear algebra, Boolean algebra, and so on.


1.1 Polynomials
A polynomial involves operations of addition, subtraction, multiplication, and non-negative
integer exponents of terms consisting of variables and coefficients. For example, x2 + 2x − 3 is a
polynomial in the single variable x. Polynomial can be rewritten using commutative, associative
and distributive laws.
An important part of algebra is the factorization of polynomials by expressing a given
polynomial as a product of other polynomials that cannot be factored any further. Another
important part of algebra is computation of polynomial greatest common divisors. x2 + 2x − 3 can
be factored as (x − 1)(x + 3).


1.2 Boolean Algebra
Boolean algebra is the branch of algebra in which the values of the variables are true values
denoted by 1 and 0 or true and false respectively.

Boolean algebra can be used to describe logic circuit; it is also use to reduce complexity of
digital circuits by simplifying the logic circuits. Boolean algebra is also referred to as Boolean
logic. It was developed by George Boole sometime on the 1840s and is greatly used in
computations and in computer operations. The name Boolean comes from the name of the
author.

Boolean algebra is a logical calculus of truth values. It somewhat resembles the arithmetic
algebra of real numbers but with a difference in its operators and operations. Boolean operations
involve the set {0, 1}, that is, the numbers 0 and 1. Zero [0] represents “false” or “off” and One
[1] represents “true” or “on”.

1 – True, on

, 0 – False, off

This has proved useful in programming computer devices, in the selection of actions based on
conditions set.

Basic Boolean operations

1. AND
The AND operator is represented by a period or dot in-between the two operands e.g
- X .Y

The Boolean multiplication operator is known as the AND function in the logic domain;
the function evaluates to 1 only if both the independent variables have the value 1.

2. OR
The OR operator is represented by an addition sign. Here the operation + is different from
that defined in normal arithmetic algebra of numbers. E.g. X+Y
The + operator is known as the OR function in the logic domain; the function has a value
of 1 if either or both of the independent variables has the value of 1.
3. NOT
The NOT operator is represented by X' or X̅.
This operator negates whatever value is contained in or assigned to X. It changes its value
to the opposite value. For instance, if the value contained in X is 1, X' gives 0 as the
result and if the value stored in X is 0, X' gives 1 as the result. In some texts, NOT may
be represented as X̅

To better understand these operations, truth table is presented for the result of any of the
operations on any two variables.

Truth Tables

A truth table is a mathematical table used in logic to compute the functional values of
logical expressions on each of their functional arguments. It is specifically in connection with
Boolean algebra and Boolean functions. Truth tables can be used to tell if a proposition
expression is logically valid. In a truth table, the output is completely dependent on the input. It
is composed of a column for each input entry and another column the corresponding output.
Each row of the truth table therefore contains one possible configuration of the input variables
(for instance, X=true Y=false), and the result of the operation for those values.

Applications of truth table

1. The truth table can be used in analyzing arguments.
2. It is used to reduce basic Boolean operations in computing
$8.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
ibraheemolayemi4

Conoce al vendedor

Seller avatar
ibraheemolayemi4
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
3
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes