First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete
, CONTENTS
1. SetsE andE Relations 1
I. GroupsE andE Subgroups
2. IntroductionE andE Examples 4
3. BinaryE Operations 7
4. IsomorphicE BinaryE Structures 9
5. Groups 13
6. Subgroups 17
7. CyclicEE Groups 21
8. GeneratorsE andE CayleyE Digraphs 24
II. Permutations,ECosets,EandEDirectEProducts
9. GroupsEofEPermutations 26
10. Orbits,ECycles,EandEtheEAlternatingEGroups
30
11. CosetsEandEtheETheoremE ofELagrange 34
12. DirectE ProductsE andE FinitelyE GeneratedE AbelianE Groups 37
13. PlaneE Isometries 42
III. HomomorphismsE andE FactorE Groups
14. Homomorphisms 44
15. FactorE Groups 49
16. Factor-GroupE ComputationsE andE SimpleE Groups 53
17. GroupEActionEonEaESet 58
18. ApplicationsEofEG-SetsEtoECounting 61
IV. RingsE andE Fields
19. RingsEandEFields 63
20. IntegralE Domains 68
21. Fermat’sE andE Euler’sE Theorems 72
22. TheE FieldE ofE QuotientsE ofE anE IntegralE Domain 74
23. RingsE ofE Polynomials 76
24. FactorizationEofEPolynomialsEoverEaEField 79
25. NoncommutativeEExamples 85
26. OrderedE RingsE andE Fields 87
V. IdealsE andE FactorE Rings
27. HomomorphismsEandEFactorERings 89
28. PrimeEandEMaximalEIdeals 94
,29. GröbnerEBasesEforEIdeals 99
, VI. ExtensionE Fields
30. IntroductionEtoEExtensionEFields 103
31. VectorE Spaces 107
32. AlgebraicE Extensions 111
33. GeometricEConstructions 115
34. FiniteE Fields 116
VII. AdvancedEGroupETheory
35. IsomorphismETheorems 117
36. SeriesEofEGroups 119
37. SylowE Theorems 122
38. ApplicationsE ofE theE SylowE Theory 124
39. FreeE AbelianE Groups 128
40. FreeEGroups 130
41. GroupE Presentations 133
VIII. GroupsE inE Topology
42. SimplicialE ComplexesE andE HomologyE Groups 136
43. ComputationsEofEHomologyEGroups 138
44. MoreEHomologyEComputationsEandEApplications 140
45. HomologicalEAlgebra 144
IX. Factorization
46. UniqueE FactorizationE Domains 148
47. EuclideanE Domains 151
48. GaussianE IntegersE andE MultiplicativeE Norms 154
X. AutomorphismsE andE GaloisE Theory
49. AutomorphismsEofEFields 159
50. TheE IsomorphismE ExtensionE Theorem 164
51. SplittingE Fields 165
52. SeparableEExtensions 167
53. TotallyEInseparableEExtensions 171
54. GaloisE Theory 173
55. IllustrationsEofEGaloisETheory 176
56. CyclotomicEExtensions 183
57. InsolvabilityE ofE theE Quintic 185
APPENDIXEE MatrixEE Algebra 187
iv