100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary Classical Field Theory (Instructor Solution Manual, Solutions) Series: Author(s): Joel Franklin.

Puntuación
-
Vendido
-
Páginas
111
Subido en
28-09-2024
Escrito en
2024/2025

Classical Field Theory (Instructor Solution Manual, Solutions) Series: Author(s): Joel Franklin Complete PDF File

Institución
Classical Field Theory Manual 1st Edition
Grado
Classical Field Theory Manual 1st Edition











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Classical Field Theory Manual 1st Edition
Grado
Classical Field Theory Manual 1st Edition

Información del documento

¿Un libro?
Subido en
28 de septiembre de 2024
Número de páginas
111
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Classical Field Theory Solution Manual 1st Edition
Joel Franklin




Chapter 1

Special Relativity

Problem 1.1
From the definitions,
1 2η
cosh2 η = e + 2 + e−2 η

4 (1.1)
1 2η
2
e − 2 + e−2 η ,

sinh η =
4
so that cosh2 η − sinh2 η = 1.

Problem 1.2
The only difference between L and L̄ is the direction of the relative motion –
from L̄’s point of view, L is moving to the left with speed v, so we can just
take v → −v in the Lorentz boost:
 v 
c t = γ c t̄ + x̄ x = γ (v t̄ + x̄) . (1.2)
c


Problem 1.3
From tanh η = −v/c, and using cosh2 η − sinh2 η = 1, we have:
sinh η v
p =− , (1.3)
2
1 + sinh η c

and solving for sinh η gives
v
sinh η = ± q c = ±β γ. (1.4)
v2
1− c2


5

,6 CHAPTER 1. SPECIAL RELATIVITY

Using this we can find cosh η:
1
q
cosh η = 1 − sinh2 η = q = γ. (1.5)
v2
1− c2



Problem 1.4
Using the transformation directly, we have: c t̄ = γ (c t − β x) and x̄ = γ (−β c t + x),
so that
−c2 t̄2 + x̄2 = γ 2 −c2 t2 − β 2 x2 + 2 v t x + β 2 c2 t2 + x2 − 2 x v t

(1.6)
= γ 2 1 − β 2 −c2 t2 + x2 = −c2 t2 + x2 .
 

Now taking t̄ = t, x̄ = x cos θ + y sin θ and ȳ = y cos θ − x sin θ, we have:

−c2 t̄2 + x̄2 + ȳ 2 = −c2 t2 + x2 cos2 θ + 2 x y sin θ cos θ + y 2 sin2 θ


+ y 2 cos2 θ − 2 x y cos θ sin θ + x2 sin2 θ

(1.7)
= −c2 t2 + x2 + y 2 .


Problem 1.5
Length contraction says that ∆x = γ −1 ∆x̄, and we are given,
∆x 12
= = γ −1 , (1.8)
∆x̄ 13
5
so that v = 13 c is the speed of L̄.

Problem 1.6
In L, the trip took: ∆t = ∆x/v = 5 m/(12c/13) ≈ 1.81 × 10−8 s. In L̄, the
rest frame of the clock, we have:
h v i
c∆t = γ c ∆t̄ + ∆x̄ (1.9)
c
with ∆x̄ = 0, so that ∆t̄ = γ −1 ∆t, and
s  2
−8 12
≈ 6.96 × 10−9 s.

∆t̄ ≈ 1.81 × 10 s 1− (1.10)
13


Problem 1.7

, 7

From time dilation: ∆t = γ ∆t̄, and γ = 5/4, so that for ∆t̄ = 2 years, we
have ∆t = 2.5 years

Problem 1.8
We know that the interval: ∆s2 = −c2 ∆t2 + ∆x2 has the same value in all
frames related by a Lorentz boost, so that if ∆s2 ≤ 0 in L, we also have
∆s̄2 ≤ 0 in L̄, but that means that:

−c2 ∆t̄2 + ∆x̄2 ≤ 0 −→ c2 (t̄2 − t̄1 )2 ≥ (x̄1 − x̄2 )2 , (1.11)

and the two points are causally related in L̄.

Problem 1.9
From the inverse Lorentz transformation, we have:

t1 = 0
t2 = γ (β x̄2 )
(1.12)
x1 = 0
x2 = γ x̄2 ,

and γ = 5/3, β = 4/5, so c t2 = 4/3 d and x2 = 5/3 d.

c t̂



event 2
d




event 1 d

Figure 1.1: Event 1 is at the origin – event 2 is at x2 = 5/3 d, c t2 = 4/3 d.


Problem 1.10
We can take 45◦ lines emanating from each event, the events that fall within
that forward “light cone” are causally related. The events, with light cone, are

, 8 CHAPTER 1. SPECIAL RELATIVITY


c t̂



C
2


D
1
A
B

1 1 2




Figure 1.2: Events with light cones in place.


shown in Figure 1.2. From that figure, we see that A can cause nothing, B can
cause C, C causes nothing, and D could cause C.

Problem 1.11
p
For x = α t2 we have c t = c x/α, and a sketch of this curve is shown
in Figure 1.3. In that figure, a 45◦ line has been placed at the first tangent
location, indicating that the particle has reached speed c.

c t̂







Figure 1.3: The star represents the first point at which the curve’s slope is
= c, beyond this point, the particle is moving faster than c.



Problem 1.12
Referring to Figure 1.4, anything in the t > 0 shaded section (between the two
“light” lines) could be caused by an event at the origin. Anything in the t < 0
shaded section could cause the event at the origin.
$17.84
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Topscorer london
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
116
Miembro desde
5 año
Número de seguidores
13
Documentos
454
Última venta
13 horas hace
Top Scorer

Helping all Students fulfill their educational, career and personal goals.

4.3

24 reseñas

5
16
4
3
3
3
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes