100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

ACCA Unit 1 Double and Triple Integrals Class Notes

Puntuación
-
Vendido
-
Páginas
22
Subido en
22-08-2024
Escrito en
2019/2020

Class notes for Course 18MAB102T - Advanced Calculus and Complex Analysis, Unit 1, focusing on Double and Triple Integrals. Designed for students seeking a comprehensive understanding of these fundamental concepts, our notes offer a clear and concise explanation of key topics including the theory behind multiple integrals, applications, and techniques for evaluating double and triple integrals. these notes provide step-by-step solutions, illustrative examples, and insightful explanations that will enhance your learning experience and academic performance. Equip yourself with the tools needed to master complex analysis and excel in your coursework with our expert-curated notes.

Mostrar más Leer menos
Institución
Grado














Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
22 de agosto de 2024
Número de páginas
22
Escrito en
2019/2020
Tipo
Notas de lectura
Profesor(es)
Dr. anirban majumdar assistant professor
Contiene
Todas las clases

Temas

Vista previa del contenido

18MAB102T - ADVANCED CALCULUS AND
COMPLEX ANALYSIS
(Unit I - Double and Triple Integrals)

Dr. Anirban Majumdar
Assistant Professor, Department of Mathematics
SRM Institute of Science and Technology, India
Email:



April 8, 2021

,Double Integral in Cartesian Coordinate Double Integral in Polar Coordinate Double Integral by Changing Order of Integration




Outline




1 Double Integral in Cartesian Coordinate



2 Double Integral in Polar Coordinate



3 Double Integral by Changing Order of Integration

,Double Integral in Cartesian Coordinate Double Integral in Polar Coordinate Double Integral by Changing Order of Integration




Outline




1 Double Integral in Cartesian Coordinate



2 Double Integral in Polar Coordinate



3 Double Integral by Changing Order of Integration

,Double Integral in Cartesian Coordinate Double Integral in Polar Coordinate Double Integral by Changing Order of Integration




Double integral
Consider a function f (x, y) defined at each point in the finite region R of the xy-plane.
Divide R into n elementary areas ∆A1 , ∆A2 , · · · , ∆An . Let (xk , yk ) be any point
within the k-th elementary area ∆Ak . Consider the sum
n
X
f (x1 , y1 )∆A1 + f (x2 , y2 )∆A2 + · · · + f (xn , yn )∆An = f (xk , yk )∆Ak .
k=1

The limit of this sum, if exists, as the number of subdivision increases indefinitely and
area of each sub-division decreases to zero, is defined as the double integral of f (x, y)
over the region R and it is written as
ZZ ZZ
f (x, y) dA or f (x, y) dx dy.
R R

Therefore,
ZZ n
X
f (x, y) dA = lim f (xk , yk )∆Ak .
n→∞
R k=1

Note: The continuity of f is a sufficient condition for the existence of the double
integral, but not a necessary one. The above limit exists for many discontinuous
function as well.

,Double Integral in Cartesian Coordinate Double Integral in Polar Coordinate Double Integral by Changing Order of Integration




Properties of double integrals
Like single integrals, double integrals of continuous functions have algebraic properties
that are useful in computations.
1 ZZ ZZ
kf (x, y) dA = k f (x, y) dA, for any number k.
R R
2 ZZ ZZ ZZ
(f (x, y) ± g(x, y)) dA = f (x, y) dA ± g(x, y) dA.
R R R
3 ZZ
f (x, y) dA ≥ 0, if f (x, y) ≥ 0 on R.
R
4 ZZ ZZ
f (x, y) dA ≥ g(x, y) dA if f (x, y) ≥ g(x, y) on R.
R R
5 If R is the union of two non-overlapping regions R1 and R2 with boundaries that
are again made of a finite number of line segments or smooth curves, then
ZZ ZZ ZZ
f (x, y) dA = f (x, y) dA f (x, y) dA.
R R1 R2

,Double Integral in Cartesian Coordinate Double Integral in Polar Coordinate Double Integral by Changing Order of Integration




Evaluating double integral on rectangular domain

Theorem (First Form of Fubini’s Theorem)
If f (x, y) is continuous on the rectangular region R : a ≤ x ≤ b, c ≤ y ≤ d, then
ZZ Z bZ d Z dZ b
f (x, y) dA = f (x, y) dy dx = f (x, y) dx dy.
a c c a
R


Example
(1 − 6x2 y) dA where R = {(x, y) : 0 ≤ x ≤ 2, −1 ≤ y ≤ 1}.
RR
Calculate
R

Solution: By Fubini’s theorem,
ZZ Z 1 Z 2
(1 − 6x2 y) dA = (1 − 6x2 y) dx dy
−1 0
R Z 1 h ix=2
= x − 2x3 y dy (by keeping y fixed)
x=0
Z−1
1
= (2 − 16y) dy
h −1 i1
= 2y − 8y 2 = 4.
−1

, Double Integral in Cartesian Coordinate Double Integral in Polar Coordinate Double Integral by Changing Order of Integration




Evaluating double integral on rectangular domain
Note: Reversing the order of integration gives the same answer:
ZZ Z 2 Z 1
(1 − 6x2 y) dA = (1 − 6x2 y) dy dx
0 −1
R Z 2 h iy=1
= y − 3x2 y 2 dx (by keeping x fixed)
0 y=−1
Z 2
= 2 dx
0
h i2
= 2x
0

= 4.
$6.89
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
thilakvasan

Conoce al vendedor

Seller avatar
thilakvasan Self
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
3
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes