100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary Year 12 ATAR Maths Applications - Sequences cheatsheet

Puntuación
-
Vendido
-
Páginas
1
Subido en
08-05-2024
Escrito en
2021/2022

1-page summary able to be brought into your test covering the Sequences topic in the Year 12 Maths Applications course.

Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Escuela secundaria
Grado
Año escolar
8

Información del documento

Subido en
8 de mayo de 2024
Número de páginas
1
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Arithmetic sequences

Rule for d: d = t2 − t1 = t3 − t2 = t4 − t3 = …, OR d = tn − tn−1
Rule for nth term: tn = a + (n-1)d

Recurrence relation: tn+1 = tn + d, where t1 = a

ex. if the first 6 terms of a sequence are 2, 7, 12, 17, 22, 27, state the value of the 10th and 20th terms. tn = a + (n-1)d
t10 = 2 + (10-1)5 = 47 and t20 = 2 + (20-1)5 = 97
ex. for the arithmetic sequence 54, 51, 48, …, find which term equals zero. tn = a + (n-1)d → tn = 54 + (n-1)-3 →
0 = 54 + (n-1)-3 → 54 ÷ 3 = n-1 → 18 + 1 = n → n = 19
ex. the temperature at a ski resort was displayed as 3°C, but steadily decreased by 0.6°C every hour. how long after
opening is the temperature at 0°C? tn = a + (n-1)d → 0 = 3 + (n-1)-0.6 → 3 ÷ 0.6 = n-1 → n = 6 hours

ex. find a rule for the nth term of sequence tn+1 = tn - 8, where t1 = 4. tn = a + (n-1)d → tn = 4 – 8 (n-1) → tn = 12 – 9n
ex. find the arithmetic sequence in which t10 = 14 and t25 = 105. tn = a + (n-1)d → 14 = a + 9d, 105 = a + 22d →
105 = 14 – 9d + 22d → 105 – 14 = -9d + 22d → → d = 7 → a = 14 – 9(7) → a = 49, ∴ tn+1 = tn + 7, where t1 = 49

Geometric sequences

Rule for r: r = t2 / t1 = t3 / t2 = t4 / t3 = …, OR r = tn / tn-1
Rule for nth term: tn = arn-1

Recurrence relation: tn+1 = rtn, where t1 = a

ex. if the first 6 terms of a geometric sequence are 2, 6, 18, 243, 729, 2187, state the value of the 8th and 15th terms.
tn = arn-1 → t8 = 2(3)8-1 = 4374, t15 = 2(3)15-1 = 9565938
ex. a population increases by 11% each month. if population in the first month was 20, what will there be in 2 years?
11% = 100 + 11 = 1.11 → tn = arn-1 → t24 = 20(1.11)24-1 = 220.525
ex. in 1 year, $25000 is raised for a club. in 2 years, $20000 is raised, and $16000 in 3. How much is raised in 5?
tn = arn-1 → t5 = 25000(0.8)5-1 → t5 = $10240

ex. state the geometric sequence tn = 4(0.25)n-1, where n = 1, 2, 3, as a recurrence relation. tn+1 = 0.25tn, where t1 = 16
ex. the fourth term in a geometric sequence is 128 and the common ration is two; find the first term. tn = arn-1
128 = a(2)4-1 →128 ÷ 8 = a(8) → a = 16, ∴ tn+1 = 2tn, where t1 = 16

Recurrence relations

First order: tn+1 = rtn + d

ex. find the first 6 terms defined by the difference equation tn+1 = tn – 4, where t1 = 12. t2 = t1 – 4, ∴ 12 – 4 = 8 →
t3 = t2 – 4, ∴ 8 – 4 = 4 → t4 = t3 – 4, ∴ 4 – 4 = 0 → t5 = t4 – 4, ∴ 0 – 4 = -4 → t6 = t5 – 4, ∴ -4 – 4 = -8
ex. a sequence has the equation wn+1 = 3wn – 4. if w3 = -1, find w = 5. w4 = 3(-1)-4 = -7 → w5 = 3(-7)-4 = -25
ex. the third term in a sequence is 24. if un+1 = 2un + 6, find the first term, u1. 24 = 2u2 + 6 → 24 – 6 = 2u2 → 9 = u2
∴ 9 = 2u1 + 6 → 9 – 6 = 2u1 → 3 ÷ 2 = u1
ex. find the recurrence relation generated by 8, 26, 80. tn+1 = rtn + d → t2 = rt1 + d → 26 = r8 + d → 80 = r26 + d →
d = 26 – r8 → 80 = r26 + 26 – r8 → 80 – 26 = r26 – r8 → 54 = 18r → 54 ÷ 18 = r → r = 3 → d = 26 – r8 → d = 26 –
3(8) → d = 26 – 24 → d = 2 ∴ tn+1 = 3tn + 2, where t1 = 8

Steady state solutions

if -1 < r < 1, a steady state is reached.

with tn+1 = tn, let x = tn

ex. a sequence is defined by the recurrence relation t n+1 = 0.4tn + 18, where t1 = 4. what value do the terms in this
sequence approach in the long run? tn+1 = 0.4tn + 18 → x = 0.4x + 18 → x – 0.4x = 18 → 0.6x = 18 → x = 30
ex. the sequence un+1 = kun + 12, where u1 = 10, has a steady state solution of 37.5. find k. 37.5 = 37.5k + 12 →
37.5 – 12 = 37.5k → 25.5 ÷ 37.5 = k → k = 17/25
ex. a photocopier is purchased for $10000 in 2014. it depreciated by 18% p.a. write down a recurrence relation that
gives the value of the photocopier at the start of each year. 100 – 18 = 0.82 = 0.82 → tn+1 = 0.82tn, where t1 = 10000.
$5.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
tabl0t

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
tabl0t Murdoch University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
28
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes