100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary Stochastic Models RUG

Puntuación
-
Vendido
-
Páginas
29
Subido en
05-04-2024
Escrito en
2023/2024

A summary containing all theorems, propositions and other important subjects from the book 'Introduction to Probability Models' chapters 1-7 and chapter 9. This is the exactly what students from the RUG need to study for the exam of Stochastic Models.

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
1-7, 9
Subido en
5 de abril de 2024
Número de páginas
29
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Summary Stochastic Models, Chapters 1-7, 9
Carine Wildeboer
April 2024, Rijksuniversiteit Groningen


Chapter 1 · Introduction to Probability Theory
1.2 Sample Space and Events
Sample space, S = {...}: set of all possible outcomes of an experiment.
Event, E = {...}: any subset of the sample space S.

Union, E ∪ F : either in E or F or in both E and F.
Intersection, E ∩ F : all outcomes that are both in E and in F.
Mutually exclusive, EF = ∅: the event consisting of no outcomes. E and F have zero overlap.
S∞
Union of multiple events, n=1 En : the event that consists of all outcomes that are in En for at least
one value of n = 1, 2, .... T∞
Intersection of multiple events, n=1 En : the event consisting of those outcomes that are in all of the events
En , n = 1, 2, ...

Complement, E c : consists of all outcomes in the sample space that are not in E.

1.3 Probabilities Defined on Events
Probability of event E, P (E): for each event E of sample space S, we assume P(E) exists and satisfies the
following:
(i) 0 ≤ P (E) ≤ 1
(ii) P (S) = 1
(iii) For any sequence of events E1 , E2 , ... that are mutually exclusive, that is, En Em = ∅ when n ̸= m, then:

[ ∞
X
P( En ) = P (En )
n=1 n=1

Inclusion-exclusion identity: the probability of the union of n events equals the sum of the probabilities of
these events taken one at a time minus the sum of the probabilities of these events taken two at a time plus the
sum of the probabilities of these events taken three at a time, and so on. For any n events E1 , E2 , E3 , ..., En
X X X
P (E1 ∪ E2 ∪ · · · ∪ En ) = P (Ei ) − P (Ei Ej ) + P (Ei Ej Ek )
i i<j i<j<k
X
− P (Ei Ej Ek El )
i<j<k<l

+ · · · + (−1)n+1 P (E1 E2 · · · En )

1.4 Conditional Probabilities
Conditional Probability, P (E|F ): the probability that E occurs, given that F occurs:
P (EF )
P (E|F ) =
P (F )

1

,1.5 Independent Events
Independence: when the occurrance of F has no effect on E, E and F are independent if:

P (EF ) = P (E)P (F ) ⇒ P (E|F ) = P (E)

Or for multiple events:
P (E1′ , E2′ , ..., Er′ ) = P (E1′ )P (E2′ ) · · · P (Er′ )
Independent trials: sequence of experiments, each of which results in either ”success” or ”failure”, that are
independent:
n
Y
P (Ei1 Ei2 · · · Ein ) = P (Eij )
j=1


1.6 Bayes’ Formula
The probability of the event E is a weighted average of the conditional probability of E given that F has occurred
and the conditional probability of E given that F has not occurred:

P (E) = P (E|F )P (F ) + P (E|F c )(1 − P (F ))

Bayes’ Formula:
P (E|Fj )P (Fj )
P (Fj |E) = Pn
i=1 P (E|Fi )P (Fi )


Chapter 2 · Random Variables
2.1 Random Variables
Random variables: real-valued functions defined on the sample space, can be discrete or continuous.
Indicator random variable for event E:
(
1, if E occurs
I=
0, if E does not occur

Cumulative Distribution Function (cdf ) F (b): the probability that random variable X takes on value less
or equal to b:
F (b) = P (X ≤ b)
Its properties are:

(i) F (b) is a non-decreasing function of b
⇒ P (a < X ≤ b) = F (b) − F (a) ∀a < b,
(ii) limb→∞ F (b) = F (∞) = 1
(iii) limb→−∞ F (b) = F (−∞) = 0

Probability X is strictly smaller than b:

P (X < b) = lim P (X ≤ b − h) = lim F (b − h)
h→0+ h→0+


2.2 Discrete Random Variables
Discrete: random variable can take on at most a countable number of possible values.
Probability mass function, p(a) of X:
p(a) = P (X = a)




2

, If X must assume one of the values x1 , x2 , ..., then:

p(xi ) > 0, i = 1, 2, ...
p(x) = 0, all other values of x

X
Therefore, we have: p(xi ) = 1
i=1

The cdf F can be expressed as: X
F (a) = p(xi )
allxi ≤a


2.2.1 The Bernoulli Random Variable
Trial with either ”success” (X = 1) or ”failure” (X = 0). The pmf function of a Bernoulli random variable X
is given by:

p(0) = P (X = 0) = 1 − p
p(1) = P (X = 1) = p

for some p ∈ (0, 1).

2.2.2 The Binomial Random Variable
If X represents the number of successes in n trials, it has a binomial pmf having parameters (n, p):
 
n i
p(i) = p (1 − p)n−i , i = 0, 1, ..., n
i
where:  
n n!
=
i (n − 1)!i!

2.2.3 The Geometric Random Variable
Independent trials are performed until a success (with probability p occurs. Geometric random variable X is
the number of trials until the first success, the pmf is given by:

p(n) = P (X = n) = (1 − p)n−1 p, n = 1, 2, ...

2.2.4 The Poisson Random Variable
Random variable X is Poisson distributed with parameter λ > 0 if its pmf is:
λi
p(i) = P (X = i) = e−λ , i = 0, 1, ...
i!
Can be used to approximate binomial random variable if n is large and p is small (use λ = np).

2.3 Continuous Random Variables
Probability Density Function, pdf, f (x): a non-negative function, defined for all real x ∈ (−∞, ∞), having
the property that for any set B of real numbers:
Z
P (X ∈ B) = f (x)dx
B

We obtain: Z b
P (a ≤ X ≤ b) = f (x)dx
a
Z a
d
F (a) = P (X ∈ (−∞, a]) = f (x)dx ⇒ F (a) = f (a)
−∞ da

3
$38.17
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
carinewildeboer Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
20
Miembro desde
7 año
Número de seguidores
17
Documentos
9
Última venta
5 meses hace

4.0

5 reseñas

5
1
4
3
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes