100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Statistics for the Behavioral Sciences

Puntuación
-
Vendido
1
Páginas
42
Subido en
09-02-2024
Escrito en
2023/2024

Summary of Statistics for the Behavioral Sciences for the course Introduction to Statistical Analysis at the pre-master media and Creative Industries. Based on the literature, lectures and tutorials INCLUDING: SPSS, practice questions, pictures, colours, bullet points and more!

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Chapter 1, 3, 4, 6 - 9, 11, 12, 15 - 17
Subido en
9 de febrero de 2024
Número de páginas
42
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Introduction to Statistical Analysis
Chapter 1: Introduction to Statistics
Statistics = the study of how we describe and make inferences from data (Commonly applied to evaluate
scientific observations)


Descriptive statistics = applying statistics to organize and summarize information. Used so other
people can read about it. To make sense or meaning of a list of numeric values.
- Typically presented graphically, in tabular form (tables), or as summary statistics (single values)
- Tables and graphs have the advantage of clarifying findings in a research study
Inferential statistics = allows researchers to infer or generalize observations made with samples to
the larger population from which they were selected.
• Inference = a conclusion reached on the basis of evidence and reasoning

Population = set of all individuals, items, or data of
interest. The group that will be generalized
Population parameter = a characteristic that
describes a population
Sample = set of individuals, items, or data selected
from a population of interest.
Sample statistic = a characteristic that describes a
sample

N = Population size
n = Sample size



The observations researchers make are typically recorded as data; measurements or observations
that are typically numeric. A datum is a single measurement or observation, usually referred to as a
score or raw score.

Structure for making observations:
1. Ask a question
2. Set up a research study
3. Measure behaviour
4. Evaluate findings

Level of measurements (NOIR)
variables
Qualitative




• Nominal = no ranking available
o E.g.: favourite medium, hair colour, nationality, gender, religion
• Ordinal = meaningful ranking/ordering. Distance is unknown
variables
Quantitative




o E.g.: Social class, conservatism, prejudice, preference rankings, market position
• Interval = distance is important
o E.g.: IQ. Fahrenheit (80 degrees is not twice as hot as 40 degrees, because zero is not a total lack of heat),
attitude, opinions
• Ratio = absolute and meaningful zero point (true zero point)
o E.g.: hours of watching tv, age (you can say a person is twice as old as another), sales, income, cost

➔ We always first need to know the level of measurement in order to know which statistical
techniques we may use for the given variable(s).

Unit of analysis = what or whom that is being studied. The unit that you will be able to draw a
conclusion about.

,Variable = a measured property of each of the units of analysis
• Univariate = one variable: ‘what was the average grade if the ISA exam last year?’
• Bivariate = two variables: ‘did males and females differ in their grades?’
• Multivariate = three or more variables: ‘was the grade dependent on the initial motivation,
the time spent on reading and gender’.

Types of variables
Continuous variable = measured along a continuum.
 Measured at any place beyond the decimal point. Can thus be measured in fractional units.
 But are only measured in whole units or categories
 E.g.: 1.0, 2.0, 3.0, etc. But also: 3.14812, 2.7492, and so on.
 E.g.: weight, length, time, temperature
Discrete variable = measured in whole units of categories
 So, they are not measures along a continuum
 E.g.: 1, 2, 3, 4, 5, etc.
 E.g.: Sum of two dices, number of students/siblings, amount of change in your pocket

Quantitative variable = by amount, numeric units. Often collected by measuring or counting.
 Both continuous and discrete variables can be quantitative
Qualitative variable = varies by class. Often labels for the behaviours we observe
 Only discrete variables

,Chapter 3: Summarizing Data
Central tendency = statistical measures for locating a single score that is most representative or
descriptive of all scores in a distribution. Although we lose some meaning anytime we reduce a set
of data to a single score, statistical measures of central tendency ensure that the single score
meaningfully represents a set of data.
1) Mean
2) Median
3) Mode

Measures of central tendency
• Mean (M) = all values are added up and divided by n, which is the number of observations in
the sample. Only to interval and ratio level of measurements. Mostly used for describing
normally distributed variables.
o Population of Mean =
o Sample mean =
o The ‘balance point’ in a distribution
o Characteristics:
✓ Changing any score will change the mean
✓ Adding or removing a score will change the mean (unless that score is already equal to the
mean)
✓ Adding, subtracting, multiplying, dividing each score by a given value (a ‘constant’)
causes the mean to change accordingly
✓ Sum of difference from the mean is zero → 0 = Σ(x – M)
✓ Sum of squared differences from the mean is minimal → = Σ(x – M2)




• Median = the middle value of a distribution
o (1) Sort all cases based on their value x, (2) the order of the ‘middle case’ equals the median
o Whenever n is an even number, the median is the mean value of two middle cases
𝑛+1
▪ Median position = 2
o Only to ordinal / interval ratio level of measurements
o Often used for interval/ratio variables that have skewed distributions
o It is not as sensitive to outliers as the mean
o The median can be estimated by a cumulative percent distribution
• Mode = the category with the largest amount of cases
o Can be used for nominal, ordinal, interval, ratio variables

Normal distribution (bell curve) = symmetrical distribution in which scores are similarly distributed
above and belove the mean, the median and the mode at the centre of the distribution.
➔ The mean, median, and mode is the same value

Skewed distribution = a distribution of scores that includes outliers or scores that fall substantially
above or below most other scores in a data set.
 Positively skewed distribution = in which the outliers are substantially
larger (toward the right tail in a graph) than most other scores
 Negatively skewed distribution = in which outliers are substantially
smaller (toward the left tail in a graph) than most other scores.




Skewed distribution

, Distribution types
❖ Modal distribution => in which one or more scores occur most often or most frequently
❖ Unimodal distribution => in which one score occurs most often or most frequently. Have a
single mode.
❖ Bimodal distribution => in which two scores occur most often or most frequently. Has two
modes.




Bimodal distribution
❖ Multimodal distribution => in which more than two scores occur most often or most
frequently. It has more than two modes.
❖ Nonmodal distribution (rectangular distribution) => all scores occur at the same frequency. Is has
no mode at all.

Anytime you see phrases such as most often, typical, or common, the mode is being used to describe
these data.

The mode is used to describe nominal data that identify something or someone, nothing more.
Because a nominal scale value is not a quantity, it does not make sense to use the mean or median.

When to use what Measure of Central Tendency:
$7.62
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
LeonieTiehuis Saxion Hogeschool
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
73
Miembro desde
6 año
Número de seguidores
51
Documentos
20
Última venta
5 meses hace
Samenvattingen Sportmarketing

Ik schrijf samenvattingen voor de opleiding Commerciële Economie- Sportmarketing. Ik schrijf de samenvattingen zorgvuldig en maak gebruik van afbeeldingen, diverse lettertypes, dikgedrukte teksten, gekleurde teksten, symbolen, figuren en soms verwerk ik zelfs mogelijk tentamenvragen in de samenvattingen! Is er iets mis met de door jou gekochte samenvatting? Stuur mij dan even een berichtje en ik reageer binnen een dag!

3.2

12 reseñas

5
4
4
3
3
0
2
1
1
4

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes