100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Entrevista

1st sem Statistics impotant

Puntuación
-
Vendido
-
Páginas
11
Subido en
22-01-2024
Escrito en
2022/2023

Its help to understand the concept of statistics

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Escuela secundaria
Año escolar
1

Información del documento

Subido en
22 de enero de 2024
Número de páginas
11
Escrito en
2022/2023
Tipo
Entrevista
Empresa
Desconocido
Personaje
Desconocido

Temas

Vista previa del contenido

Central limit theorem

Central limit theorem is a statistical theory which states that when the large sample size has a finite
variance, the samples will be normally distributed and the mean of samples will be approximately equal
to the mean of the whole population.

In other words, the central limit theorem states that for any population with mean and standard deviation,
the distribution of the sample mean for sample size N has mean μ and standard deviation σ / √n .

As the sample size gets bigger and bigger, the mean of the sample will get closer to the actual population
mean. If the sample size is small, the actual distribution of the data may or may not be normal, but as the
sample size gets bigger, it can be approximated by a normal distribution. This statistical theory is useful in
simplifying analysis while dealing with stock indexes and many more.

The CLT can be applied to almost all types of probability distributions. But there are some exceptions. For
example, if the population has a finite variance. Also, this theorem applies to independent, identically
distributed variables. It can also be used to answer the question of how big a sample you want. Remember
that as the sample size grows, the standard deviation of the sample average falls because it is the
population standard deviation divided by the square root of the sample size. This theorem is an important
topic in statistics. In many real-time applications, a certain random variable of interest is a sum of a large
number of independent random variables. In these situations, we can use the CLT to justify using the
normal distribution.

Central Limit Theorem Statement
The central limit theorem states that whenever a random sample of size n is taken from any distribution
with mean and variance, then the sample mean will be approximately normally distributed with mean and
variance. The larger the value of the sample size, the better the approximation to the normal.
Assumptions of Central Limit Theorem

 The sample should be drawn randomly following the condition of randomization.
 The samples drawn should be independent of each other. They should not influence the other
samples.
 When the sampling is done without replacement, the sample size shouldn’t exceed 10% of the
total population.

 The sample size should be sufficiently large.

, The formula for the central limit theorem is given below:
$11.79
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
kiruthigamurugan

Conoce al vendedor

Seller avatar
kiruthigamurugan Higher secondary school
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
1
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes