100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting - Wiskunde 'A1a; 2. Veeltermfuncties' GO! Onderwijs

Puntuación
-
Vendido
1
Páginas
6
Subido en
26-11-2023
Escrito en
2023/2024

Dit document is een samenvatting van 'Analyse 1a; 2. Veeltermfuncties', uit het boek 'VBTL 5 - gevorderde wiskunde' voor het vak Wiskunde in het GO! Onderwijs in de doorstroomfinaliteit/ASO.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Escuela secundaria
Estudio
3e graad
Grado
Año escolar
5

Información del documento

Subido en
26 de noviembre de 2023
Número de páginas
6
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Veeltermfuncties

1. INLEIDING
1.1 Definities
Functie
Een functie is een verband tussen twee variabelen x en y waarbij voor elke x-waarde
hoogstens één y-waarde bestaat. Bij ene functievoorschrift is x de onafhankelijke
variabele en y de afhankelijke variabele. Er zijn verschillende representaties van een
functie: verwoording, tabel, letterformule (voorschrift) en grafiek. De formule die de
functie bepaalt, is het functievoorschrift. De y-waarden van een functie worden ook de
functiewaarden of beelden genoemd.
Domein en bereik van een functie
Het domein van een functie f is de verzameling van de x-waarden waarvoor de
functiewaarde bestaat.
De notatie hiervan is: dom f = … Het domein lezen we af op de x-as, van links naar
rechts.
Het bereik (beeld) van een functie f is de verzameling van de y-waarden waarvoor een
x-waarde bestaat zodat y = f(x). De notatie hiervan is: ber f = … Het bereik lezen we af
op de y-as, van onder naar boven.
1.2 Algebraïsche functies
Algebraïsche functie
Een algebraïsche functie is een reële functie waarbij in het functievoorschrift enkel de
bewerkingen optellen, aftrekken, vermenigvuldigen (ook machten), delen en n-
demachtsworteltrekking voorkomen.
Veeltermfunctie
Een veeltermfunctie van de n-de graad is een functie waarvan het functievoorschrift
een veelterm is van de n-de graad in x.
Rationale functie
g(x)
Een rationale functie f is een functie met voorschrift f(x) = waarbij g en h
h(x)
veeltermfuncties zijn en h(x) niet de nulveelterm is.
Irrationale functie
Een irrationale functie is een algebraïsche functie die verschillend is van een rationale
functie. Dit betekent dat in het functievoorschrift (na vereenvoudiging) de variabele x
voorkomt onder één of meerdere worteltekens of in de noemer van één of meerdere
breuken.
1.3 Niet-algebraïsche of transcendente functies
Transcendente functies
Niet-algebraïsche functies of transcendente functies zijn functies zoals exponentiële
functies (met x als exponent), logaritmische functies, goniometrische functies (sin x,
cos x …), G-functies en signfuncties.




1

, 2. VEELTERMFUNCTIES
2.1 Voorbeelden
Soorten veeltermfuncties
Er zijn verschillende soorten veeltermfuncties:

functievoorschrift functie
f(x) = a constante functie
f(x) = ax + b eerstegraadsfunctie
f(x) = ax² + bx + c tweedegraadsfunctie
f(x) = ax³ + bx² + cx + d derdegraadsfunctie
2.2 Herhaling van de belangrijkste kenmerken van constante, eerste- en
tweedegraadsfuncties
Constante functies
De grafiek is een rechte die evenwijdig is met de x-as en gaat door het punt met
coördinaat (0,a).
Eerstegraadsfuncties
De grafiek is een dalende of een stijgende rechte, die al dan niet door de oorsprong
−b
gaat. De nulwaarde van een eerstegraadsfunctie kunnen we berekenen door: x=
a
a wordt de richtingscoëfficiënt genoemd. Als die negatief is, is de grafiek een dalende
rechte. Als die positief is, is de grafiek een stijgende rechte. Als b = 0, dan gaat de
grafiek door de oorsprong.
Tweedegraadsfuncties
De grafiek is een parabool met vergelijking y = ax² + bx + c waarvan de as evenwijdig
is met de y-as.
−b −b2 + 4 ac
De top van de grafiek (maximum of minimum) noteren we als volgt: T ( , ).
2a 4a
Als de parameter a positief is, hebben we een dalparabool en een minimum. Als a
negatief is, dan spreken we van een bergparabool en een maximum. De nulwaarden
kunnen we berekenen door de discriminant te berekenen. De formule daarvoor is b² -
4ac.
D < 0 ax² + bx + c = 0 heeft geen oplossingen V=∅
b
D = 0 ax² + bx + c = 0 heeft één oplossing V = {− }
2a
D > 0 ax² + bx + c = 0 heeft twee oplossingen V = {x1, x2}
−b−√ D −b+ √ D
met x1 = en x2 =
2a 2a
2.3 Hogeregraadsfuncties
f(x) = (x – 3)(2x + 4)²(-x² + x + 6)(-7 – x)
We beginnen met het bekijken van de nulwaarde(n) van elke term. De nulwaarden bij
dit functievoorschrift zijn: 3(1x), -2(2x), -7(1x) en voor -x² + x + 6 gebruiken we de
discriminant, met als oplossingen -2 en 3. Alles te samen geeft dat: -7(1x), -2(3x) en
3(2x). De nulwaarden die een even aantal keren voorkomen, moeten we goed
onthouden aangezien de grafiek links en rechts van die nulwaarde niet van teken zal
veranderen (+ blijft +, - blijft -). Om de tekentabel te kunnen opstellen, hebben we de
nulwaarden nodig (die hebben we nu al) en het verloop van de grafiek. Daarvoor
2
$6.58
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
thibauttaminiau Katholieke Universiteit Leuven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
73
Miembro desde
2 año
Número de seguidores
22
Documentos
339
Última venta
5 días hace

3.8

12 reseñas

5
5
4
3
3
2
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes