100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

ENGINEERING MATHEMATICS

Puntuación
-
Vendido
-
Páginas
51
Subido en
15-07-2023
Escrito en
2022/2023

THIS CHAPTER WILL PROVIDE YOU WITH THE NECESSARY INFORMATION YOU NEED TO AQCUIRE IN ORDER TO MUST THE SUBJECT

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
15 de julio de 2023
Número de páginas
51
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Mr paepae
Contiene
Todas las clases

Temas

Vista previa del contenido

EXPONENTIAL AND LOGARITHMIC
FUNCTIONS

INTRODUCTION

So far, we have dealt mainly with algebraic functions, which include polynomial functions
and rational functions. In this chapter, you will study two types of non-algebraic functions –
exponential functions and logarithmic functions. These functions are examples of
transcendental functions because they are said to “transcend” or go beyond algebra and
are used to describe phenomena such as the growth of a population, the growth of an
investment that earns compound interest, or the decay of a radioactive substance, which
cannot be described with algebraic functions.




LEARNING OUTCOMES


On completion of this chapter, you will be able to:

 Apply the exponential laws and properties to evaluate, manipulate, and simplify
exponential expressions containing exponents.
 Solve exponential equations.
 Perform calculations with Euler’s number.
 Evaluate, manipulate, and simplify logarithmic expressions.
 Solve logarithmic equations.
 Manipulate and change the subject of formulae containing logarithms and exponents.
 Sketch the graphs of exponential and logarithmic functions.




COMPILED BY T. PAEPAE

,2.1 EXPONENTIAL FUNCTIONS



Why it is important to understand: Exponential Functions

“Exponential functions are used in engineering, physics, biology and economics. There are
many quantities that grow exponentially; some examples are population, compound interest
and charge in a capacitor. With exponential growth, the rate of growth increases as time
increases. We also have exponential decay; some examples are radioactive decay,
atmospheric pressure, Newton’s law of cooling and linear expansion. Understanding and
using exponential functions is important in many branches of engineering”. Bird, J., 2017.
Higher engineering mathematics. Routledge.



SPECIFIC OUTCOMES


On completion of this study unit, you will be able to:

 Apply the exponential laws and properties to evaluate, manipulate, and simplify
exponential expressions containing exponents.
 Use factorisation and exponents to simplify expressions.
 Use calculators to do evaluations.
 Solve exponential equations.
 Perform calculations with Euler’s number.




1

,INTRODUCTION


In this section, we study a new class of functions called exponential functions. For example,
𝑓𝑓(𝑥𝑥) = 2𝑥𝑥
is an exponential function (with base 2). Notice how quickly the values of this function
increase.
𝑓𝑓(3) = 23 = 8
𝑓𝑓(10) = 210 = 1024
𝑓𝑓(30) = 230 = 1073741824

Compare this with the function 𝑔𝑔(𝑥𝑥) = 𝑥𝑥 2 , where 𝑔𝑔(𝑥𝑥) = 302 = 900. The point is that when
the variable is in the exponent, even a small change in the variable can cause a dramatic
change in the value of the function.


2.1.1 Defining Exponential Functions

The equation
𝑓𝑓(𝑥𝑥) = 𝑎𝑎 𝑥𝑥 where 𝑎𝑎 > 0, 𝑎𝑎 ≠ 1
defines an exponential function for each different constant 𝑎𝑎, called the base. The
independent variable 𝑥𝑥 can assume any real value.


2.1.2 Evaluating Exponential Functions


Recall that the base of an exponential function must be a positive real number other than 1.
Why do we limit the base 𝑎𝑎 to positive values? To ensure that the outputs will be real
numbers. Observe what happens if the base is not positive:

1
1 1
 Let 𝑎𝑎 = −9 and 𝑥𝑥 = . Then 𝑓𝑓 � � = (−9)2 = √−9, which is not a real number.
2 2


Why do we limit the base to positive values other than 1? Because base 1 results in the
constant function. Observe what happens if the base is 1:

 Let 𝑎𝑎 = 1. Then 𝑓𝑓(𝑥𝑥) = 1𝑥𝑥 = 1 for any value of 𝑥𝑥.


When evaluating exponential functions with a calculator, remember to enclose fractional
exponents in parentheses. Because the calculator follows the order of operations,
parentheses are crucial in order to obtain the correct result.



2

, 2.1.3 Exponential Laws and Properties

Exponential functions whose domains include irrational numbers obey the familiar laws of
exponents for rational exponents. We summarize these exponent laws and properties here.
These laws and properties are used to simplify expressions.


Multiplying expressions involving exponents
 𝑎𝑎𝑚𝑚 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑚𝑚+𝑛𝑛


Dividing expressions involving exponents
𝑎𝑎 𝑚𝑚

𝑎𝑎 𝑛𝑛
= 𝑎𝑎𝑚𝑚−𝑛𝑛


Multiple indices
 (𝑎𝑎𝑚𝑚 )𝑛𝑛 = 𝑎𝑎𝑚𝑚𝑚𝑚


These three basic laws lead to a number of important results or properties

𝑎𝑎 𝑚𝑚
 𝑎𝑎0 = 1 because 𝑎𝑎𝑚𝑚 ÷ 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑚𝑚−𝑛𝑛 and also 𝑎𝑎𝑚𝑚 ÷ 𝑎𝑎𝑛𝑛 =
𝑎𝑎 𝑛𝑛


𝑎𝑎𝑚𝑚
Then if 𝑛𝑛 = 𝑚𝑚, 𝑎𝑎𝑚𝑚−𝑚𝑚 = 𝑎𝑎0 and = 1. So 𝑎𝑎0 = 1
𝑎𝑎𝑚𝑚


1 𝑎𝑎−𝑚𝑚 ×𝑎𝑎𝑚𝑚 𝑎𝑎0 1 1
 𝑎𝑎−𝑚𝑚 = because 𝑎𝑎 −𝑚𝑚 = = 𝑎𝑎𝑚𝑚 = 𝑎𝑎𝑚𝑚. So 𝑎𝑎−𝑚𝑚 = 𝑎𝑎𝑚𝑚
𝑎𝑎 𝑚𝑚 𝑎𝑎𝑚𝑚

1
With similar reasoning, = 𝑎𝑎𝑚𝑚
𝑎𝑎 −𝑚𝑚

1 1 𝑚𝑚 𝑚𝑚 1
𝑚𝑚 𝑚𝑚
 𝑎𝑎𝑚𝑚 = √𝑎𝑎 because �𝑎𝑎 𝑚𝑚 � = 𝑎𝑎𝑚𝑚 = 𝑎𝑎1 = 𝑎𝑎. So 𝑎𝑎𝑚𝑚 = √𝑎𝑎

𝑛𝑛 𝑛𝑛
𝑚𝑚 𝑚𝑚
From this, it follows that 𝑎𝑎𝑚𝑚 = √𝑎𝑎𝑛𝑛 or � √𝑎𝑎�



 (𝑎𝑎𝑎𝑎)𝑚𝑚 = 𝑎𝑎𝑚𝑚 𝑏𝑏𝑚𝑚 e.g. (2𝑥𝑥 𝑛𝑛 )4 = 24 𝑥𝑥 4𝑛𝑛 = 16𝑥𝑥 4𝑛𝑛

𝑎𝑎 𝑚𝑚 𝑎𝑎 𝑚𝑚 2 3 23 8
 �𝑏𝑏 � = 𝑏𝑏𝑚𝑚 e.g. �𝑥𝑥� = 𝑥𝑥 3 = 𝑥𝑥 3

𝑎𝑎 −𝑚𝑚 𝑏𝑏 𝑚𝑚 𝑏𝑏𝑚𝑚 3 −2 2 2 22 4
 �𝑏𝑏 � =� � = 𝑎𝑎𝑚𝑚 e.g. � 2� = � � = 32 =
𝑎𝑎 3 9




3
$8.19
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
thatonhlanhla

Conoce al vendedor

Seller avatar
thatonhlanhla University of Johannesburg
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
15
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes