100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Principles of Communications 7th Edition / All Chapters 1 - 12 / Full Complete 2023

Puntuación
2.7
(6)
Vendido
17
Páginas
573
Grado
A+
Subido en
27-05-2023
Escrito en
2022/2023

Solution Manual for Principles of Communications 7th Edition / All Chapters 1 - 12 / Full Complete 2023

Institución
Principles Of Communications
Grado
Principles of Communications











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Principles of Communications
Grado
Principles of Communications

Información del documento

Subido en
27 de mayo de 2023
Número de páginas
573
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

  • solution manual

Vista previa del contenido

√ kT hT hT i hT × Principles of Communications 7th Edition Solution Manual Problem A.1 All parts of the problem are solved using the relation Vrms = √
4kT RB where k = 1.38 × 10—23 J/K B = 30 MHz = 3 × 107 Hz a. For R = 10, 000 ohms and T = T0 = 290 K Vrms = 4 (1.38 × 10—23) (290) (104) (3 × 107) = 6.93 × 10—5 V rms = 69.3 µV rms b. Vrms is smaller than the result in part (a) by a factor of √
10 = 3.16. Thus Vrms = 21.9 µV rms c. Vrms is smaller than the result in part (a) by a factor of √
100 = 10. Thus Vrms = 6.93 µV rms d. Each answer becomes smaller by factors of 2, √
10 = 3.16, and 10, respectively. Problem A.2 Use I = Is exp eV — 1 We want I > 20Is or exp eV — 1 > 20. a. At T = 290 K, e = 1.6x10—19 1.38x1023 x290 ~= 40, so we have exp (40V ) > 21 giving ln (21) V > 40 = 0.0761 volts 2 rms ~= 2eIB ' 2eBIs exp eV kT 2 or rms B eV = 2eIs exp kT b. If T = 90 K, then e = 2 1.6 × 10—19 1.5 × 10—5 exp (40 × 0.0761) = 1.0075 × 10—22 A2/Hz ~= 129, and for I > 20Is, we need exp(129V ) > 21 or V > ln (21) = 2.36 10—2 volts 129 i √
V = 4kT R BK K 0 Thus 2 rms B = 2 1.6 × 10—19 1.5 × 10—5 exp (129 × 0.0236) approximately as before. Problem A.3 = 1.0079 × 10—22 A2/Hz a. Use Nyquist's formula to get the equivalent circuit of R eq in parallel with R K, where Req is given by Req = R3 (R1 + R2) R1 + R2 + R3 The noise equivalent circuit consists of a rms noise voltage, V eq , in series with R eq and a rms noise voltage, V K, in series with with R K with these series combinations being in parallel. The equivalent noise voltages are Veq = √
4kT Req B The rms noise voltages across the parallel combination of Req and RK, by using superposition and voltage division, are V01 = Ve q RL Req + RK and V02 = VLRe q Req + RK Adding noise powers to get V 2 we obtain V 2 R2 V 2R2 V 2 = eq K + K eq 0 eq + RK)2 (Req + RK)2 = (4kT B) RKReq Req + RK = 4kT B RKR3 (R1 + R2) R1R3 + R2R3 + R1RK + R2RK + R3RK Note that we could have considered the parallel combination of R3 and RK as an equivalent load resistor and found the Thevenin equivalent. Let R|| = R3RK R3 + RK The Thevenin equivalent resistance of the whole circuit is then R (R1 + R2) R3 RL (R1 + R2) Req2 = || = R3 +RL R|| + R1 + R2 R3 RL R3 +RL + R1 + R2 = RKR3 (R1 + R2) R1R3 + R2R3 + R1RK + R2RK + R3RK i (R 0 0 and the mean-square output noise voltage is now V 2 = 4kT BReq2 which is the same result as obtained before. b. With R 1 = 2000 Ω, R2 = RK = 300 Ω, and R3 = 500 Ω, we have V 2 B = 4kT B = RKR3 (R1 + R2) R1R3 + R2R3 + R1RK + R2RK + R3RK 4 1.38 × 10—23 (290) (300) (500) (2000 + 300) 2000 (500) + 300 (500) + 2000 (300) + 300 (300) + 500 (300) = 2.775 × 10—18 V2/Hz Problem A.4 Find the equivalent resistance for the R1, R2, R3 combination and set RK equal to this to get R = R3 (R1 + R2) K R1 + R2 + R3 Problem A.5 Using Nyquist's formula, we find the equivalent resistance looking back into the terminals with Vrms across them. It is Req = 50 k ǁ 20 k ǁ (5 k + 10 k + 5 k) = 50 k ǁ 20 k ǁ 20 k = 50 k ǁ 10 k (50 k) (10 k) = 50 k + 10 k = 8, 333 Ω Thus which gives 2 rms = 4kT Req B = 4 1.38 × 10—23 (400) (8333) 2 × 106 = 3.68 × 10—10 V2 Vrms = 19.18 µV rms V 0 0 0 RK ǁ (R1 + RS) 2 1 + RS K S 1 2 S S 1 R2 (R1 + RS + RK) + R2 (R1 + R2 + RS) 2 RS + R 2 + (R 1 + R S ) ǁ R K 2 K Problem A.6 To find the noise figure, we first determine the noise power due to a source at the output, then due to the source and the network, and take the ratio of the latter to the former. Initally assume unmatched conditions. The results are V 2. due to RS , only = R2 ǁ RK 2 RS + R1 + R2 ǁ RK (4kT RSB) V 2. due to R1 and R2 = R2 ǁ RK 2 RS + R1 + R2 ǁ RK (4kT R1B) RK ǁ (R1 + RS) 2 V 2. due to RS , R1 and R2 = R2 ǁ RK 2 RS + R1 + R2 ǁ RK [4kT (RS + R1) B] + R2 The noise figure is (after some simplification) + (R1 + RS ) ǁ RK (4kT R2B) R1 F = 1 + RK ǁ (R1 + RS) 2 RS + R1 + R2 ǁ RK 2 R2 In the above, RS R2 + (R1 + RS) ǁ RK R2 ǁ RK RS Ra ǁ Rb RaRb = Ra + Rb Note that the noise due to R K has been excluded because it belongs to the next stage. Since this is a matching circuit, we want the input matched to the source and the output matched to the load. Matching at the input requires that RS = Rin = R1 + R2 ǁ RK = R1 + R2RK R2 + RK and matching at the output requires that RK = R out = R2 ǁ (R1 + RS ) = R2 (R1 + RS) R1 + R2 + RS Next, these expressions are substituted back into the expression for F. After some simplification, this gives R 2R2 R (R + R + R ) / (R — R ) 2 R Note that if R1 >> R2 we then have matched conditi ons of RK =~ R2 and RS =~ R1. Then, the noise figure simplifies to F = 2 + 16 R1 R2 + (4kT R2B) F = 1 +
$12.99
Accede al documento completo:
Comprado por 17 estudiantes

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los 6 comentarios
2 meses hace

Type setting is horrible. Some problems aren't even solved and just have a little explanation on full of bs

8 meses hace

Drill Problems are not included.... just the answres. pdf letters missing

1 año hace

1 año hace

2 año hace

typesetting is terrible

2 año hace

2 año hace

Thank you

2.7

6 reseñas

5
1
4
1
3
1
2
1
1
2
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
NurseGrades Chamberlain College Nursing
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
7660
Miembro desde
4 año
Número de seguidores
5612
Documentos
1984
Última venta
14 horas hace
Nursing school is hard! Im here to simplify the information and make it easier!

My mission is to be your LIGHT in the dark. If you're worried or having trouble in nursing school, I really want my notes to be your guide! I know they have helped countless others get through and that's all I want for YOU! Stay with me and you will find everything you need to study and pass any tests, quizzes and exams!

4.0

859 reseñas

5
473
4
158
3
111
2
31
1
86

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes