100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Overig

Mathématiques - Plan d’étude d’une fonction

Beoordeling
-
Verkocht
-
Pagina's
19
Geüpload op
01-03-2023
Geschreven in
2020/2021

Ce document est un cours de mathématiques qui couvre divers sujets liés au calcul et aux fonctions. Le cours est divisé en trois unités, chaque unité couvrant différents sous-thèmes. L'unité 1 s'intitule "Quelques compléments" et couvre des concepts supplémentaires liés au calcul différentiel. Le premier chapitre traite du "Théorème des valeurs intermédiaires" et donne des exemples de ses applications. Le chapitre 2 traite du "Théorème de la bijection", tandis que le chapitre 3 couvre les "Fonctions réciproques" et leurs propriétés. Le chapitre 4 fournit des exemples de certaines fonctions de référence. L'unité 2 s'intitule "Plan d'étude d'une fonction" et couvre divers aspects de l'analyse fonctionnelle. Le chapitre 1 traite du « Domaine de définition », tandis que le chapitre 2 couvre la « Parité, périodicité, conséquences graphiques ». Le chapitre 3 traite des "Limites aux bornes" et du concept d'asymptotes. Le chapitre 4 couvre les "Variations de la fonction", tandis que le chapitre 5 traite du "Tableau de variations complet avec précision des extrema". Le chapitre 6 porte sur "l'Etude des branches infinies" et le chapitre 7 sur "Intersection avec les axes". Le chapitre 8 couvre la "Représentation graphique" et fournit un guide étape par étape sur la façon de représenter graphiquement une fonction. L'unité 3 est intitulée "Exemples" et fournit des exemples de fonctions qui peuvent être analysées à l'aide des techniques couvertes dans les unités précédentes. Dans l'ensemble, ce manuel est un guide complet sur le calcul et l'analyse des fonctions, couvrant tout, des concepts de base aux techniques avancées. L'organisation claire et les instructions étape par étape facilitent le suivi et la compréhension, tandis que les exemples et les exercices offrent de nombreuses occasions de pratiquer et de renforcer l'apprentissage.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
1 maart 2023
Aantal pagina's
19
Geschreven in
2020/2021
Type
Overig
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 3:
Plan d’étude d’une fonction

Table des matières

Unité 1 - Quelques compléments ........................................................................................................2
I - Théorème des valeurs intermédiaires ....................................................................................................2
1 ) Enoncé du théorème............................................................................................................................................... 2
2 ) Exemples ............................................................................................................................................................... 2
II - Théorème de la bijection........................................................................................................................4
III - Fonctions réciproques ..........................................................................................................................4
1 ) Définition et existence d’une fonction réciproque ................................................................................................. 4
2 ) Exemple de détermination de la fonction réciproque............................................................................................. 5
3 ) Autres propriétés .................................................................................................................................................... 6
IV - Quelques fonctions de référence ..........................................................................................................7
Unité 2 - Plan d’étude d’une fonction ................................................................................................8
I - Domaine de définition ..............................................................................................................................8
II - Parité, périodicité, conséquences graphiques ......................................................................................9
1 ) Parité ...................................................................................................................................................................... 9
2 ) Périodicité ............................................................................................................................................................ 10
III - Limites aux bornes : asymptotes parallèles aux axes ......................................................................10
IV - Variations de la fonction.....................................................................................................................10
V - Tableau de variations complet avec précision des extrema ..............................................................11
VI - Etude des branches infinies ................................................................................................................11
VII - Intersection avec les axes ..................................................................................................................12
VIII - Représentation graphique ...............................................................................................................12
1 ) Définir et tracer le repère ..................................................................................................................................... 12
2 ) Tracer les asymptotes éventuelles ........................................................................................................................ 12
3 ) Placer les extrema ................................................................................................................................................ 13
4 ) Placer les points particuliers ................................................................................................................................ 13
5 ) Tracer la courbe représentative ............................................................................................................................ 13
Unité 3 - Exemples : ..........................................................................................................................14




Page

,L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 3:
Plan d’étude d’une fonction

Unité 1 - Quelques compléments


I - Théorème des valeurs intermédiaires

1 ) Enoncé du théorème

Théorème :

▪ Soit f une application continue sur I
▪ Soient I un intervalle, a et b  I avec a  b
▪ Soit   R compris entre f ( a ) et f (b)


Alors, il existe au moins un réel c dans  a, b tel que : f (c) = 
(ie l’équation f ( x) =  admet au moins une solution dans  a, b  )

Le théorème des valeurs intermédiaires est d’une compréhension assez intuitive. Si une fonction est
continue entre deux abscisses a et b, elle prend toutes les valeurs comprises entre leurs images f(a) et
f(b) ; et réciproquement.


2 ) Exemples

1- Etape du tour de France : PAU - HAUTACAM
▪ Etape de 156 km.
▪ Ville de départ : PAU, altitude 200m
▪ Ville d’arrivée : HAUTACAM, altitude 1520m




Profil de l'étape Pau-Hautacam du Tour de France 2008


Page

, L1-SDG-Mathématiques 1 P. Loup - L. Bonifas



Le profil de l'étape est une fonction définie sur l'intervalle [0;156] et à valeurs réelles.

À tout nombre x de [0;156], elle associe l'altitude du point situé à x kilomètres du départ.

Puisque les altitudes s'échelonnent au moins de 200 à 1 520m (certaines peuvent être inférieures à
200m et d’autres supérieures à 1520m), il paraît évident que les coureurs ont dû passer au moins une
fois par toutes les altitudes intermédiaires.

Cependant, cette constatation s'appuie sur deux hypothèses :

• le parcours est un intervalle, ce qui suppose que l'espace est un continuum, c'est-à-dire qu'il n'y
a pas de « trou » entre 0 et 156.
• la fonction altitude est continue, ce qui signifie qu'une variation infinitésimale du kilométrage
entraîne une variation infinitésimale de l'altitude : en d'autres termes, un coureur ne peut pas
se téléporter instantanément d'une altitude à une autre.


Illustration : cas où  = 1000 m

Le coureur passera ainsi au moins une fois par l'altitude 1 000 m.

Le théorème des valeurs intermédiaires formalise ce raisonnement empirique :


Il existe au moins un réel c   0;156 tel que : f (c) = 1000


2- Polynôme de degré impair :

Toute fonction polynôme P ( x) , à coefficients réels de degré impair admet au moins une racine réelle
(ie telle que P ( x ) = 0 ).


En effet, le degré de P ( x) étant impair, on a :


lim P( x) = − et lim P( x) = +
x →− x →+



Donc :
▪ a  R / x  a, on ait P( x)  0

▪ b  R / x  b, on ait P( x)  0


Comme P ( x) est une fonction continue, le théorème des valeurs intermédiaires permet d’affirmer
l’existence d’un réel c tel que : P(c) = 0 .




Page
$6.65
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
vivin02pro

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
vivin02pro Montpellier I
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
8
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen