100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Notas de lectura

Frequency Control in a Power System: Solution of non-linear algebraic equations

Puntuación
-
Vendido
-
Páginas
5
Subido en
28-02-2023
Escrito en
2020/2021

Module 3: Frequency Control in a Power System Lecture 12a: Solution of non-linear algebraic equations Non-linear algebraic equations and their solution In the following lecture, given the load characteristics, we will compute the steady-state frequency of a power system. We shall see that this will require us to carry out a "load flow". A loadlfow involves the solution of a set of non-linear algebraic equations. Therefore, we revise the basic methods to solve non-linear algebraic equations in this lecture.

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
28 de febrero de 2023
Número de páginas
5
Escrito en
2020/2021
Tipo
Notas de lectura
Profesor(es)
Prof. s.a. soman
Contiene
Lecture 12 - b

Temas

Vista previa del contenido

Module 3 : Frequency Control in a Power System

Lecture 12a : Solution of non-linear algebraic equations

Non-linear algebraic equations and their solution

In the next lecture, we will compute the steady state frequency of a power system, given the
load characteristics. We shall see that in general, this will require us to carry out a "loadflow".
A loadlfow involves the solution of a set of non-linear algebraic equations. Therefore, in this
lecture we revise the basic methods to solve non-linear algebraic equations.

We are aware that a transmission network in sinusoidal state state can be modelled by linear
algebraic equations in the node voltage phasors(V) and the nodal current phasor injections
(I):



where Ybus is the bus admittance matrix.

However, in power system studies, nodal injections are not specified as current phasors but as
real and reactive power injections (nonlinear functions of V and I) , and/or voltage
magnitudes of some nodes. We have also seen that real and reactive power can be a function
of frequency. In such a situation, obtaining the steady state solution (i.e. node voltage
phasors and frequency) will require us to solve a set of non-linear equations.

Therefore we take a silight diversion from the main theme and review why and how we use
numerical techniques for solving non-linear algebraic equations.

Let us consider the "why" question first. If we wish to solve an equation of the form:



Perhaps, "simplifying" it will help us solve it ?



Perhaps, if we take the natrual logarithm of both sides we may be able to do something ?



But soon enough you will realize that we seem to be getting nowhere !

It is clear that some other way (guess work ?) may be required to get the solution.


ixed Point Iteration Method

Since we have some idea of how the exponential function behaves we can try to guess the solution. We
know that:

, and



and




We can guess that the solution for should lie between 0.5 and 1.

However, this is a rough estimate. Surprisingly if we take an initial guess value :



and iterate as follows starting with k=0:



then x1=0.606, x2=0.545 , x3= 0.579, x4=0.5600, x5=0.571, x6=0.565, x7=0.568, x8=0.566, x9=0.567 ....

We seem to be "converging" to a solution which satisfies the equation !

Why does the Fixed Point Iterative Method Work ?

We can try to understand why we converge to the right solution by examining the behaviour of the iterative
method

near the solution. Suppose the correct solution to the equation is x = xs , i.e.,



Suppose the value of x at the kth iteration is near the solution xs and differs from it by a small amount Dxk ,
i.e.,



then:



which yields :



therefore if at k=0, x = xinit then,



Since:
$8.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
aakashnln

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
aakashnln indian institute of technology bombay
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
39
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes