100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Notas de lectura

Class + Reading notes Statistical Modelling for Communication Research (SMCR)(Communication Science) Y

Puntuación
-
Vendido
-
Páginas
12
Subido en
03-11-2022
Escrito en
2022/2023

This includes 2 documents. The first is a summary of the chapters that are required readings (these can help score better in the weekly bonus tests!). It includes chapters 1-11 and each chapter has its own dictionary which summarizes all the new words that were mentioned (and are relevant for the exam). The second document is a table of all the required SPSS tests that are covered in this course + some recap from MCRS which can come in handy for the exam! It explains what its for and how to do it :)

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
3 de noviembre de 2022
Número de páginas
12
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Wouter de nooy
Contiene
Todas las clases

Temas

Vista previa del contenido

Chapter 1: Sampling Distribution; How different could my sample have been?

Overview
- Inferential statistics helps generalize conclusion about a) CI, b) p-value

1 sample = 1 observation


Chapter 1 DICTIONARY
1. Sampling distribution: many samples, all possible sample statistic values and their
probabilities/ probability densities




2. Sample statistic: (aka. Random variable) number describing a characteristic of the
sample (ex. Number of yellow candies)
3. Sampling statistics: (aka. Relative frequency); sampling space (value 0-1), probability .
proportion based, sample distribution = probability distribution
4. Sampling space:(all possible sample statistic values) sample statistic value present on x
axis of graph
5. Expected value: value drawn from population = mean of sampling distribution; mean of a
probability distribution such as a sample distribution
a. True population value = expected value
6. Probability density: a way of getting probability of a continuous random variable (like a
sample statistic) falls within a particular range
- Continuous variables! (range of values!) (ex. Bag with average candy weight of
AT LEAST 2.8 grams)
- Choose threshold/ range (ex. Between 2.70 grams to 2.85, and the
expected average is 2.8 grams)
- Probability density function: x-axis values for continuous probability
distribution (0-1)! NOT PROBABILITY!
- Right-hand probabilities: probabilities of values above (and
including) a threshold
- Left-hand probabilities: probabilities of values up to (and including)
a threshold value
7. Random variable: variable with values that depend on chance

, 8. Confidence interval: estivate possible range of values for sample statistic of a selected
population (compare sample drawn vs. expected value of population)
9. Population: large set of observations about which we want to make a statement
10. Sample: smaller set of observations about which we want to make a statement
11. Population statistic: parameter
12. Probability distribution: when we change frequency in sampling distribution into
proportions
- Tells us
- How many yellow candies to expect in bag of 10 candies
- Probability of specific outcome occurring

Population value: 1) draw 1000+ samples, 2) calculate mean of sampling distribution (of sample
statistic), 3) that number = population value
- To calculate population value accurately:
1. Random samples only
2. Unbiased estimated (used throughout course, and assumed in SPSS)
3. Continuous (probability density) vs. discrete (probability)
4. Impractical (time/resources)


Chapter 2: Probability models, sampling distribution

Mean of sampling distribution = expected value = true value in population

Sampling distribution construction from ONE SAMPLE
1. Bootstrapping (NON-CATEGORICAL VARIABLES)

Step 1) Calculate number of yellow candies (%) in original sample
Step 2) see if mean of bootstrap sample is the same = true sampling distribution

Sampling with replacement: bootstrap sample is different than original
- Pros: Creates meaningful sampling distribution
Sampling without replacement: proportion/ sample statistic of interest = identical to original
sample
- Con: Does not create meaningful sampling distribution
Sample statistic of interest: (ex. Proportion of yellow candies)

Cons of bootstrapping
1) Samples must be drawn randomly
2) Samples must be large

2. Exact approach (ONLY CATEGORICAL & DISCRETE VALUES!)
Aim: to calculate exact probabilities of all possible sample results

, Conditions
Pro Con

True sampling distribution Categorical & discrete variables only

Computer intensive


3. Theoretical approximation
Theoretical probability distribution: sampling distribution as math function
Normal distribution: larger amount of samples = more accurate (1000+ samples)


Conditions
- Probability of drawing a sample statistic X population size > 5

Con
- Does not fit sampling distribution for all kinds of data (can be skewed towards left/right
and therefore, it does not appear in the graph)
- Approximation of sampling distribution does not equal the true sampling distribution
- T-distribution: tests on means in small samples
- F-distribution: analysis of variance (ANOVA)
- Chi-squared: categorical variables


Chapter 3: Estimating a parameter; which population values are possible?

Confidence level/ probability: area under the curve which is not in the rejection area
Percision: width of interval (ex. 95% confidence interval)
Critical value: (z-value) where the CI ends/starts

- Population value does not have probability ( because its an exact. One value)
Z x SE =lower limit/ upper limit
exact distance between sample result and lowest plausible population value (lower limit)
*SE: Standard deviation of sampling distribution (calculated by SPSS)

To find lower and upper limit
- Set sample as mean, and apply Z x SE
- This leads to the conclusion that we are 95% confident that the average candy
weight in the population is between X gram and X
- Y grams.

Chapter 3 Dictionary
1. Point estimate: single guest for population value (based on sample)
$20.69
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
martinatacconi Universiteit van Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
13
Miembro desde
3 año
Número de seguidores
11
Documentos
10
Última venta
3 meses hace

4.0

2 reseñas

5
0
4
2
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes