100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Vector Calculus, Colley - Downloadable Solutions Manual (Revised)

Puntuación
-
Vendido
-
Páginas
460
Grado
A+
Subido en
06-10-2022
Escrito en
2022/2023

Description: Solutions Manual for Vector Calculus, Colley, 4e is all you need if you are in need for a manual that solves all the exercises and problems within your textbook. Answers have been verified by highly experienced instructors who teaches courses and author textbooks. If you need a study guide that aids you in your homework, then the solutions manual for Vector Calculus, Colley, 4e is the one to go for you. Disclaimer: We take copyright seriously. While we do our best to adhere to all IP laws mistakes sometimes happen. Therefore, if you believe the document contains infringed material, please get in touch with us and provide your electronic signature. and upon verification the doc will be deleted.

Mostrar más Leer menos











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Información del documento

Subido en
6 de octubre de 2022
Número de páginas
460
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Vista previa del contenido

Chapter 1


Vectors

1.1 Vectors in Two and Three Dimensions

1. Here we just connect the point (0, 0) to the points indicated:

y
3
b
2.5

2
c
1.5

1 a

0.5

x
-1 1 2 3

2. Although more difficult for students to represent this on paper, the figures should look something like the following. Note that
the origin is not at a corner of the frame box but is at the tails of the three vectors.




3


2 a
z

1 b
c
0
-2 -2 0 2
0
2
x y


In problems 3 and 4, we supply more detail than is necessary to stress to students what properties are being used:
3. (a) (3, 1) + (−1, 7) = (3 + [−1], 1 + 7) = (2, 8).
(b) −2(8, 12) = (−2 · 8, −2 · 12) = (−16, −24).
(c) (8, 9) + 3(−1, 2) = (8 + 3(−1), 9 + 3(2)) = (5, 15).
(d) (1, 1) + 5(2, 6) − 3(10, 2) = (1 + 5 · 2 − 3 · 10, 1 + 5 · 6 − 3 · 2) = (−19, 25).
(e) (8, 10) + 3((8, −2) − 2(4, 5)) = (8 + 3(8 − 2 · 4), 10 + 3(−2 − 2 · 5)) = (8, −26).
4. (a) (2, 1, 2) + (−3,  9, 7) = (2 − 3, 1 + 9, 2 + 7) = (−1,
 10, 9).
(b) 12 (8, 4, 1) + 2 5,−7, 14 = 4, 2, 12 + 10, −14, 12 = (14, −12, 1).
(c) −2 (2, 0, 1) − 6 12 , −4, 1 = −2((2, 0, 1) − (3, −24, 6)) = −2(−1, 24, −5) = (2, −48, 10).
5. We start with the two vectors a and b. We can complete the parallelogram as in the figure on the left. The vector from the
origin to this new vertex is the vector a + b. In the figure on the right we have translated vector b so that its tail is the head of
vector a. The sum a + b is the directed third side of this triangle.


c 2012 Pearson Education, Inc. 1

,2 Chapter 1 Vectors

y y
7 7


6 6
a+b a+b

5 5 b translated


b 4 b 4


3 3


2 a 2 a


1 1


x x
-2 -1.5 -1 -0.5 0.5 1 -2 -1.5 -1 -0.5 0.5 1

6. a = (3, 2) b = (−1, 1) 3 
a − b = (3 − (−1), 2 − 1) = (4, 1) 1
2
a = 2
,1 a + 2b = (1, 4)

y

a+2b
4


3


2 a


b 1 a-b
(1/2)a

x
-2 -1 1 2 3 4 5


-1


→ −→ −→
7. (a) AB = (−3 − 1, 3 − 0, 1 − 2) = (−4, 3, −1) BA = −AB = (4, −3, 1)


(b) AC = (2 − 1, 1 − 0, 5 − 2) = (1, 1, 3)


BC = (2 − (−3), 1 − 3, 5 − 1) = (5, −2, 4)
→ −→

AC + CB = (1, 1, 3) − (5, −2, 4) = (−4, 3, −1)
(c) This result is true in general:
B




A




C

Head-to-tail addition demonstrates this.


c 2012 Pearson Education, Inc.

, Section 1.1. Vectors in Two and Three Dimensions 3

8. The vectors a = (1, 2, 1), b = (0, −2, 3) and a + b = (1, 2, 1) + (0, −2, 3) = (1, 0, 4) are graphed below. Again note that
the origin is at the tails of the vectors in the figure.
Also, −1(1, 2, 1) = (−1, −2, −1). This would be pictured by drawing the vector (1, 2, 1) in the opposite direction.
Finally, 4(1, 2, 1) = (4, 8, 4) which is four times vector a and so is vector a stretched four times as long in the same direction.



4


b
a+b
z
2


a


0
-2 0
1 0 2
x y

9. Since the sum on the left must equal the vector on the right componentwise:
−12 + x = 2, 9 + 7 = y, and z + −3 = 5. Therefore, x = 14, y = 16, and z = 8.
10. √
If we drop a perpendicular
√ from (3, 1) to the x-axis we see that by the Pythagorean Theorem the length of the vector (3, 1) =
32 + 12 = 10.
y
1


0.8


0.6


0.4


0.2


x
0.5 1 1.5 2 2.5 3

11. Notice that b (represented by the dotted line) = 5a (represented by the solid line).
y
10


8 b


6


4


2
a
x
1 2 3 4 5




c 2012 Pearson Education, Inc.

, 4 Chapter 1 Vectors

12. Here the picture has been projected into two dimensions so that you can more clearly see that a (represented by the solid
line) = −2b (represented by the dotted line).

a 8


6


4


2


-8 -6 -4 -2 2 4

-2
b

-4

13. The natural extension to higher dimensions is that we still add componentwise and that multiplying a scalar by a vector means
that we multiply each component of the vector by the scalar. In symbols this means that:
a + b = (a1 , a2 , . . . , an ) + (b1 , b2 , . . . , bn ) = (a1 + b1 , a2 + b2 , . . . , an + bn ) and ka = (ka1 , ka2 , . . . , kan ).
In our particular examples, (1, 2, 3, 4) + (5, −1, 2, 0) = (6, 1, 5, 4), and 2(7, 6, −3, 1) = (14, 12, −6, 2).
14. The diagrams for parts (a), (b) and (c) are similar to Figure 1.12 from the text. The displacement vectors are:
(a) (1, 1, 5)
(b) (−1, −2, 3)
(c) (1, 2, −3)
(d) (−1, −2)
Note: The displacement vectors for (b) and (c) are the same but in opposite directions (i.e., one is the negative of the
other). The displacement vector in the diagram for (d) is represented by the solid line in the figure below:
y
1

0.75 P1

0.5

0.25

x
0.5 1 1.5 2 2.5 3

-0.25

-0.5
P2
-0.75

-1

15. In general, we would define the displacement vector from (a1 , a2 , . . . , an ) to (b1 , b2 , . . . , bn ) to be (b1 −a1 , b2 −a2 , . . . , bn −
an ).
In this specific problem the displacement vector from P1 to P2 is (1, −4, −1, 1).
−→
16. Let B have coordinates (x, y, z). Then AB = (x − 2, y − 5, z + 6) = (12, −3, 7) so x = 14, y = 2, z = 1 so B has
coordinates (14, 2, 1).
17. If a is your displacement vector from the Empire State Building and b your friend’s, then the displacement vector from you
to your friend is b − a.


c 2012 Pearson Education, Inc.
$40.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
tb4u City University New York
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
971
Miembro desde
3 año
Número de seguidores
776
Documentos
2374
Última venta
1 semana hace

4.0

158 reseñas

5
87
4
27
3
19
2
6
1
19

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes