100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Mathématiques - Chapitre 2 "Espaces Vectoriels"

Puntuación
-
Vendido
-
Páginas
12
Subido en
04-08-2022
Escrito en
2021/2022

Ce fichier contient le 2ème Chapitre du cours Mathématiques.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
4 de agosto de 2022
Número de páginas
12
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Bruasse laurent
Contiene
Todas las clases

Temas

Vista previa del contenido

CHAPITRE II
LA NOTION D’ÉSPACE VECTORIEL




I. STRUCTURE D’ÉSPACE VECTORIEL

La notion d’espace vectoriel est une notion de ”structure” mathématiques comme il en existe beaucoup
d’autres : Il s’agit de reconnaître qu’un grand nombre d’objets à priori très différents (fonctions, suites,
polynômes etc ...) ont, en fait, des comportements algébriques (c’est à dire pour les opérations d’addition ...)
assez proches. On les regroupe donc dans un ”label” qui nous permettra d’énoncer des résultats qui seront
valables pour des objets à priori très différents.

(Espace vectoriel) :
Soit 𝐸 un ensemble. On dit que 𝐸 est un espace vectoriel (réel) s’il est muni de deux opérations :
- Une addition interne :
+: 𝐸 × 𝐸 → 𝐸
(𝑢(⃗, 𝑣⃗) → 𝑢 (⃗ + 𝑣⃗
- Un produit externe par un réel :
.∶ ℝ × 𝐸 → 𝐸
(𝛼, 𝑢 (⃗) → 𝛼. 𝑢 (⃗
Qui vérifient les 8 axiomes suivantes :
1. Associativité :∀𝑢 (⃗, 𝑣⃗, 𝑤
((⃗ ∈ 𝐸, 𝑢(⃗ + (𝑣⃗ + 𝑤 ((⃗) = (𝑢 (⃗ + 𝑣⃗) + 𝑤 ((⃗
2. Commutativité : :∀𝑢 (⃗, 𝑣⃗, ∈ 𝐸, 𝑢(⃗ + 𝑣⃗ = 𝑣⃗ + 𝑢 (⃗
3. Vecteur nulle : Il existe un vecteur noté 0 (⃗ 𝑡. 𝑞. ∀𝑢 (⃗, ∈ 𝐸, 0(⃗ + 𝑢(⃗ = 𝑢(⃗
4. Opposé :∀𝑢 (⃗ ∈ 𝐸 il existe un vecteur noté −𝑢 (⃗ ∈ 𝐸 𝑡. 𝑞. 𝑢 (⃗ + (−𝑢 (⃗) = (−𝑢
(⃗) + 𝑢 (⃗
(⃗ = 0
5. ∀𝛼, 𝛽 ∈ ℝ, ∀𝑢 (⃗ ∈ 𝐸, 𝛼. (𝛽. 𝑢 (⃗) = (𝛼. 𝛽). 𝑢 (⃗
6. ∀𝛼 ∈ ℝ, ∀𝑢 (⃗, 𝑣⃗ ∈ 𝐸, 𝛼. (𝑢 (⃗ + 𝑣⃗) = 𝛼. 𝑢 (⃗ + 𝛼. 𝑣⃗
7. ∀𝛼, 𝛽 ∈ ℝ, ∀𝑢 (⃗ ∈ 𝐸, (𝛼 + 𝛽). 𝑢 (⃗ = 𝛼. 𝑢(⃗ + 𝛽. 𝑢 (⃗
8. ∀𝑢 (⃗ ∈ 𝐸, 1. 𝑢(⃗ = 𝑢 (⃗
Les éléments de 𝐸 sont alors appelés des vecteurs et les réels de ℝ des scalaires.

EXEMPLES :
- L’ensemble des nombres réels (ℝ, +, ∙) ;
- Par extension l’ensemble des espaces (ℝ! , +, ∙) avec les opérations usuelles
𝑥" 𝑦" 𝑥" + 𝑦" 𝛼𝑥"
∀𝛼 ∈ ℝ, ∀𝑥⃗ = > ⋮ @ , ∀𝑦⃗ = > ⋮ @ ∈ ℝ , 𝑥⃗ + 𝑦⃗ > ⋮ @ , 𝛼. 𝑥⃗ > ⋮ @
!
𝑥! 𝑦! 𝑥! + 𝑦! 𝛼𝑥!

- L’ensemble des polynômes de degré inférieur ou égal à 𝑛 ∈ ℕ
(ℝ! [𝑋], + ∙) = ({𝑃(𝑋) = 𝑎$ + 𝑎" 𝑋 + ⋯ + 𝑎! 𝑋 ! , 𝑎% ∈ ℝ}, +,∙)
L’addition de deux polynômes se faisant en additionnant leurs coefficients degré par degré. Vérifiez que
les propriétés 1) à 8) sont bien satisfaites…
(2𝑥 & + 𝑥) + (𝑥 + 3) = 2𝑥 & + 2𝑥 + 3

, n 0 1 n…
Un U0 Un Un…
(⃗ = (0, 0, 0, … )
0
- L’ensemble des suites réelles
(ℝ' , +,∙) = ((𝑢! )!∈ℕ , +,∙)
- L’ensemble des fonctions réelles avec l’addition que vous connaissez des fonctions :
({𝑓: ℝ → ℝ}, +,∙)
Þ𝑓 + 𝑔(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)
- L’ensemble de toutes les fonctions affines avec l’addition est le produit par un scalaire usuel (cf
démonstration Hayek-Leca)
- La liste est non exhaustive, on verra bientôt l’espace vectoriel des matrices réelles…

Quelques règles de calcul qui vont de soi dans les exemples mais qui sont vraies en toute généralité pour
n’importe quel espace vectoriel (elles découlent des 8 axiomes de la définition) :

PROPOSITION :
- Le vecteur nul 0 (⃗ et l’opposé −𝑢 (⃗ d’un vecteur sont uniques.
- ∀𝑢 (⃗ = (0⃗, (−1). 𝑢
(⃗ ∈ 𝐸, 0. 𝑢 (⃗ = −𝑢 (⃗
- ∀𝛼 ∈ ℝ, 𝛼. 0 (⃗ = 0(⃗
- 𝛼. 𝑥⃗ = (⃗
0 ⟺ 𝛼 = 0 𝑜𝑢 𝑥⃗ = 0 (⃗ ∈ ℝ
$6.05
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
DamienGth

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
DamienGth Aix-Marseille
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 año
Número de seguidores
0
Documentos
70
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes