100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Planar Vectors solved questions

Puntuación
-
Vendido
-
Páginas
6
Grado
A+
Subido en
18-07-2022
Escrito en
2021/2022

Planar Vectors solved questions

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
18 de julio de 2022
Número de páginas
6
Escrito en
2021/2022
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

CHAPTER 33
Planar Vectors

33.1 Find the vector from the point ,4(1, -2) to the point B (3, 7).

The vector AB = (3 - 1,7 - (-2)) = (2, 9). In general, the vector P,P2 from />,(*,, ;y,) to P2(x2, y,) is
(*2-.v,, y2-yt).
33.2 Given vectors A = (2,4) and C = (-3,8), find A + C, A - C , and 3A.
By componentwise addition, subtraction, and scalar multiplication, A + C = (2 + (—3), 4 + 8) = (— 1.12),
A-C = (2-(-3), 4-8) = (5,-4), and 3A = (3-2, 3-4) = (6, 12).

33.3 Given A = 3i + 4j and C = 2i-j, find the magnitude and direction of A + C.
A + C = 5i + 3j. Therefore, |A + C| = V(5)2 + (3)2 = V34. If S is the angle made by A + C with the
positive *-axis, tan 0 = f . From a table of tangents, 0 = 30° 58'.

33.4 Describe a method for resolving a vector A into components A, and A 2 that are, respectively, parallel and
perpendicular to a given nonzero vector B.

A = A , + A 2 , A j = c B , A 2 - B = 0. So, A 2 = A - A, = A - cB, 0 = A 2 - B = (A - cB) • B = A - B - c|B|.
Hence, c = (A-B)/|B| 2 . Therefore, A: = B, and A 2 = A - cB = A - B. Here, (A-B)/|B|

is the scalar projection of A on B, and = A, is the vector projection of A on B.

33.5 Resolve A = (4,3) into components A, and A 2 that are, respectively, parallel and perpendicular to B=
(3,1).
From Problem 33.4 c = (A-B)/|B| 2 = [(4-3) + (3-1)/10] = 3. So, A, = cB = |(3,1) = ( f , f) and
A2 = A - A 1 = ( 4 , 3 ) - ( l , | ) = ( - i , l ) .

33.6 Show that the vector A = (a,fe) is perpendicular to the line ax + by + c = 0.
Let P,(AT,, _y,) and P2(x2, y 2 ) be two points on the line. Then ax, + byt + c = 0 and ox, + by2 + c = 0.
By subtraction, a(jc, - x2) + b(yl - y 2 ) = 0, or (a, b) • (xl - x2, yl - y2) = 0. Thus, (a, b) • P,P, = 0,
(a, 6)1 P2Pt- (Recall that two nonzero vectors are perpendicular to each other if and only if their dot product is
0.) Hence, (a, b) is perpendicular to the line.

33.7 Use vector methods to find an equation of the line M through the point P,(2, 3) that is perpendicular to the line
L:jt + 2.y + 5 = 0.
_By Problem 33.6, A = (1,2) is perpendicular to the line L. Let P(x, y) be any point on the line M.
P,P = (x-2, y-3) is parallel to M. So, (x -2, y - 3) = c(l, 2) for some scalar c. Hence, x-2 = c,
y - 3 = 2c. So, > > - 3 = 2(x-2), y = 2x-l.

33.8 Use vector methods to find an equation of the line N through the points P,(l, 4) and P2(3, —2).

Let P(x,y) be any point onJV. Then P,P = (x -JU y -4) and P,P2 = (3-1,-2-4) = (2,-6).
Clearly, (6,2) is perpendicular to P,P2, and, therefore, to P,P. Thus, 0 = (6, 2) • (x - 1, y - 4) = 6(x - 1) +
2( y - 4) = 6x + 2y - 14. Hence, 3x + y -1 = 0 is an equation of N.

33.9 Use vector methods to find the distance from P(2,3) to the line 3*+4y-12 = 0. See Fig. 33-1.
At any convenient point on the line, say ,4(4,0), construct the vector B = (3.4). which is perpendicular to
the line. The required distance d is the magnitude of the scalar projection of AP on B:

[by Problem 33.4]


268

, PLANAR VECTORS 269




Fig. 33-1

33.10 Generalize the method of Problem 33.9 to find a formula for the distance from a point P(x,, y,) to the line
ax + by + c = 0.
Take the point A(—cla, 0) on the line. The vector B = (a, b) is perpendicular to the line. As in Problem
33.9,



This derivation assumes a 5^0. If a = 0, a similar derivation can be given, taking A to be (0, -c/b).

33.11 If A, B, C, D are consecutive sides of an oriented quadrilateral PQRS (Fig. 33-2), show that A + B + C + D = 0.
[0 is (0,0), the zero vector.]

PR = PQ + QR = A + B. PR= PS + SR = -D - C. Hence, A + B = - D - C , A + B + C + D = 0.




Fig. 33-2 Fig. 33-3


33.12 Prove by vector methods that an angle inscribed in a semicircle is a right angle.
Let %.QRP be subtended by a diameter of a circle with center C and radius r (Fig. 33-3). Let A =
CP and B=Ctf. Then QR = \ + B and Pfl = B-A. Q/?-Pfl = (A + B)-(B-A) = A-B-A-A +
B - B - B - A = -r 2 + r2 = 0 (since A - A = B - B = r2). Hence, QRLPR and 4QRP is a right angle.

33.13 Find the length of A = i + V3j and the angle it makes with the positive x-axis.



33.14 Write the vector from P,(7, 5) to P2(6, 8) in the form ai + bj.

PlP2 = (6-7, 8-5) = (-l,3)=-l + 3j.

33.15 Write the unit vector in the direction of (5,12) in the form ai + bj.
|(5,12)|= V25 +144 =13. So, the required vector is iV(5,12) = &i + nj-

33.16 Write the vector of length 2 and direction 150° in the form ai + bj.
In general, the vector of length r obtained by a counterclockwise rotation 6 from the positive axis is given by
r(cos 0 i + sin 9 j). In this case, we have 2 = -V5i+j.
$9.08
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
jureloqoo

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
jureloqoo METU
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 año
Número de seguidores
0
Documentos
46
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes