100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Machine Learning (X_400154)

Puntuación
-
Vendido
2
Páginas
43
Subido en
12-07-2022
Escrito en
2021/2022

Samenvatting van het vak Machine Learning als gegeven aan de Vrije Universiteit Amsterdam.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
12 de julio de 2022
Número de páginas
43
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

\




Machine Learning
Introduction
1. What is machine learning?
↳ and
give the computer examples let it
figure out the code

( i. e. ,
the
way of
solving) itself



what makes a suitable ML problem ?
-
we can't solve the problem explicitly
-


approximate solutions are fine

-
limited reliability ,
predictability interpretability
,
is fine

-


plenty examples to learn from



where do we use ML ?

-
inside other software

in science
analytics data
mining data
-

, ,



-
in science / Statistics
-




machine learning provides systems the ability to
automatically
learn and improve from experience without
being explicitly
programmed .




in
* reinforcement
learning :
taking actions a world based on

feedback
delayed
* online learning :
predicting &
learning at the same time

offline
*
learning :
separate learning ,
predicting &
acting
1 . take a fixed dataset of examples ( =
instances )

2. train a model to learn from examples
test it works its
3. the model to see if
by checking predictions
4 .
If the model works , put it into production
( i. e. .
Use its predictions to take actions )




we do not want to find a solution for each problem individually
(in isolation ) ,
we want
generic solutions !

problem → abstract task →
algorithm

, abstract tasks

supervised explicit examples of input & output
-
:




↳ learn to input
predict the outcome for an unseen




* classification : assign a class to each example
*
regression :
assign a number to each example



unsupervised only inputs provided
-
:



↳ find any pattern that explains the data
something about




2. Classification ( table)
i. start with data : 3 0
Spam ← instance
2 0 ham

the features ham
are the
things we 0 I
T ✗
measure about the instances 4

feature label

2 .
the dataset is fed through
learner
a learning algorithm

3 .
the learning algorithm outputs model

a model ( classifier )



the model is constructed so that when it sees a new instance ,




( with the same features as fed to the learner ) ,
it can produce
( i. e.
a class for us , classify the data)



how to build a classifier ?
-
linear classifier : cut the feature space in two

4 line
1-D: dot 2D 3D plane 4Dt
hyperplane
: : :
, , .




every point in the model space is a line in the feature space
↳ using the definition of a line ( axtbytc =D



loss data ( Modell =

performance of model on the data

→ the tower ,
the better

, -
-

decision tree classifier :



. -
start at the top and node
at every
in the tree we look at one feature

&
depending on
higher or lower .
we move


to the left or right . The leaves are the decision

labelled with classes .

boundary is the shape
in feature space
K Nearest
Neighbours
-
-
:




doesn't do
any learning ,
but remembers the

whole dataset When it point it looks at the K
.

gets a new ,




points that it and point
nearest knows
assigns to the new


the class that is most frequent in this set of
neighbours .




↳ of
K is the
hyper parameter the
algorithm

variations

-
features : usually numerical or
categorical
-



binary classification :
two classes
-
multi class classification : more than two classes

multi label classification all classes be true
: none , some or
may
-




-
class probabilities / scores :
the classifier reports a
probability
or score for each class



offline machine
learning steps :




I. abstract the problem to a standard task (e. g. ,
classification )

2. choose instances and their features
↳ for supervised
learning ,
choose
target .




3. Choose model class ( i. e. ,
linear model ,
decision tree ,
KNN )

4 for
. Search a
good model

✗i features of instance i

yi true label for ✗i
3. Other abstract tasks
FIX it model
regression
where in classification, the target is a class .
In
regression ,




the is number We have to predict the number
target a . ,




given the features .




data → learner → model

, the loss function for
regression
:


'


loss (f) 1h ( f ( ✗i )
Yi )Z the mean
squared errors ( MSE) loss
= -
-
-


;




the regression tree and KNN regression can also be used




clustering data
+
we are
given features ,
but no
target values .




The learner has to decide based on patterns learner
found how to the dataset in clusters tr
separate
model
-
K -
means :
picks three random values and colours all points in

the data
according to which of the 3 means is closest .




Recompile the location of the mean values
by averaging the

locations of all the points .
Then recover the points . Iterate

these two steps ( recomputetrecolourl.tn the end ,
the data

/ the feature space is separated into three natural
clustering regions .




density estimation

Density is a lot like
clustering ,
but the task of the learner is to

a model that indicates whether that
produce outputs a number that

Instance is likely according to the distribution of the data .




the output is a probability (
categorical features) or a


probability density ( numerical features )




generative modeling

building a model from which
you can sample new

examples ( sampling)



semi supervised learning
-




✗L Small set of labelled data

✗u large set of unlabelled data




self train classifier
training C ✗a
:
-
on


loop :
label ✗u with C

retrain C on Xut ✗ i
$8.05
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
lauraduits1 Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
27
Miembro desde
3 año
Número de seguidores
18
Documentos
8
Última venta
1 mes hace

4.0

1 reseñas

5
0
4
1
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes