100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

College aantekeningen Data-Analyse voor EBE (30K215-B-6) after midterm

Puntuación
-
Vendido
8
Páginas
56
Subido en
09-05-2022
Escrito en
2020/2021

in dit document staan alle slides van de hoorcolleges + uitleg van de docent (erg gedetailleerd) + alle r-codes met uitleg (hoe je eraan komt en wat het betekent) + de output in R-studio.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
9 de mayo de 2022
Número de páginas
56
Escrito en
2020/2021
Tipo
Notas de lectura
Profesor(es)
Pavel cizek
Contiene
Todas las clases

Temas

Vista previa del contenido

CHAPTER 22: Multiple linear Regression, Model violations

Motivation:

•The market-model example:
(Y = ‘daily stock price of Heineken’ on X= ‘daily price of AEX’)
-model requirements were checked graphically
-transformation of Y and X into daily returns (%) was suggested
-visual observations can be misleading
–proper tests are needed

•Amazon ebook sales: no checks have been done!
(Y = `dollar sales from published ebooks’ on X= `ebookprice’)

•Baseball teams’ performance: no checks have been done!
(Y= `runs per season’ on X= `on-base and slugging percentages’)

•Wage differences: no significant differences detected (H0). Is it due to H0 being valid, small sample
size, or invalid assumptions?

22.1 Collinearity (=if the correlation between 1 explanatory variable and linear combination of some
other explanatory variables is very strong, it can lead to collinearity)

-does not influence SSE and hence the usefulness of the model
-but interpretation of the regression coefficient becomes harder
-the values of t-tests are biased towards zero
-proving the individual significances may be hard

What can be done? (against collinearity)
-only take action if necessary (collinearity isn’t always the case, there is a possibility of it)
-possible action: remove a perpetrating variable from the model or transform them into linearly
independent components
-if caused by squared or interaction terms, the problem can occasionally be solved by switching to
centered variables (if it is possible), that is, using

22.3: Non-linearity

Is the linearity in the basic assumption E ( Y )=β 0 + β 1 X appropriate?
Consequences? Model and estimates are incorrect IF LINEARITY IS VIOLATED!
What can be done? Find a correct model specification (for example logarithms, or dummies, etc)

 This can often be detected by studying the residuals

The existence of non-linearity can be tested as follows:
-estimate the original model E ( Y )=β 0 + β 1 X 1+ ..+ β k X k
-create the variable of the accompanying predictions ŷ
-extend the original model by including the square of the prediction (for example, with coefficient γ =
gamma!):

, First estimate
the normal model, after that
extend the model with PREDICT2
with using the cbind function
 conclusion: model should be
extended to a non-linear one!



22.2: Heteroskedasticity (if homoskedasticity is violated!)




Or of its second-order counterpart with interactions. The usefulness of this model, H 0 : E ( ε 2 ) =γ 0
indicates the presence of heteroskedasticity (if the x_K’s are not equal to 0, there is
homoskedasticity)

What can be done?

,- Heteroskedasticity-consistent standard errors can be used to obtain confidence intervals/tests
for parameter values
- Weighted least squares (not addressed here!)
not discussed in
lecture, because
there is
homoskedasticity
here!




Aux model is
explained by a linear
of quadratic function!
 it is gamma0 +
gamma1X1
 or gamma1X1 +
gamma 2 X1^2




Third step: regress aux model on price e-book (first option above). Alternative: regress aux model on
price e-book and square of e-book price! (=second option above!). We have to look to F-statistic and
its p-value to check whether the auxiliary model is useful

, Possible solutions as H 0 :γ =0 is rejected (because p-value < any reasonable alpha!):

- Heteroskedasticity consistent standard errors
- Weighted least squares estimation, that is, standardizing data so that errors become
homoscedastic

This is still the amazon example, and now we know there is heteroskedasticity!




standard output =
valid under homo- AND
heteroskedasticity! BUT,
standard error, t-value and
p-value are only valid
under homoscedasticity (if
obtained with lm-
command!)

 = alternative procedure
how to obtain the errors
that are also valid under heteroskedasticity! (ESTIMATED ARE FOR BOTH EQUAL!)

22.3 Non-normality (= not crucial for outcome!)

Consequences:

-the LS estimators are generally not normally distributed
-the LS estimators are not optimal anymore
-the statistical conclusions thus cannot be trusted
-however, these problems are less serious for large sample sizes (CLT implies that the LS-estimators
are approximately normal) with the main exception being prediction intervals

 Non-normality can be detected with the Kolgomorov-Smirnov, Shapiro-Wilk, or Lilliefors test and
other test procedures (see chapter 24)

What can be done?

- A perfect remedy does not exist
$9.69
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Economiestudentje Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
73
Miembro desde
3 año
Número de seguidores
46
Documentos
0
Última venta
7 meses hace

3.8

10 reseñas

5
3
4
3
3
3
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes