100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Mathematics 20 (Math 20)

Puntuación
-
Vendido
1
Páginas
101
Subido en
20-04-2022
Escrito en
2021/2022

Mathematics 20 includes topics such as Algebra, Equations and Inequalities, Two-Dimensional Coordinate System, Conic Sections, System of Equations and Inequalities, Functions, Polynomials, Exponential and Logarithmic Functions, Trigonometric Functions and Identities, Trigonometric Equations and Inverse Trigonometric Functions, Solutions of Triangles, Solutions of Triangles, and Polar Form of Complex Numbers

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
20 de abril de 2022
Número de páginas
101
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Mr. pelayo
Contiene
Todas las clases

Temas

Vista previa del contenido

math

2

,equations in 1 two equations
equivalent if they
are

have
said to
the
be
same

Valuable solution

set


equation equivalent equations

is a statement saying that 3×+7 =
13
two expressions are equal 3x =
6

=
2

examples check the solution
-

2x + 1 =
x -

7 3 (2) t 7 =
13
'
1
=
2 312) =
6
2- 2 4 -
Zz 2 =
2
.
V2 =


✗ t 1 Y linear equation
y

in one variable is an equation
if an equation holds true for that can be written as
every permissible / real value
( in R ) ,
then the equation is ax 't b = 0 ,
a. b ER ,
a 1=0
called an
identity
2 an equation leading to a linear
↳ !z = is true for any 2=12
z y -
zz equation is one which upon ,

at
undefined algebraic manipulation ( transpose)
reduces the ax t b 0
form → =



if an
equation is never true for ↳

any permissible / real value -5=2×+7 x 12=0 or
→ - -




( in R ) , then the equation is CELTALE ) ✗ t 12=0

called a contradiction


how to solve linear equation
1 -

2x =3
-
2x is never true

of ✗ C- R 1 additive property ( transpose )
2
multiplicative property ( multiply
if an equation holds true for some both sides by a nonzero R )
value Is ,
then the equation is a ↳ or divide
conditional equation 3
simplify ( similar ) terms

↳ -8 size those with
2x t I =
x -

7 hold if ✗ =
* combine on one
variables and on the other those
a solution or root an equation those that don't
of
( in one variable ) is a value
of the variable that makes the example : 5×-5 = 2x t 7

equation true 5×-2 ✗ =
7+5



set:{
311 =
12
solution
a solution set of an equation 3
is the set
of all solutions of ✗
=
4
the equation
3×12 -
✗ ) t 7×1-3 = 5×-3×2 t 1
[ the solution sets that we con
-


-3×1 t 13×1-3 =
5×-3×2 t 1




set:{-
Sider are subsets of R ] 13×-511 =
1-3
solution
" 8x = -
z -1
real number ✗ =


8 4

?⃝
?⃝

,quadratic equation * works whether or not ax2 t
-
in ✗ is an equation which has bxtc is factorable
the general form axtbxtc =
0 ,


=/ 0 ↳ 6×2 11 10 0
where b. C ER and
-
=
a. a
-




* once a =
0 → linear equation a 6 b =
11 C = 10
-
= -




an
equation leading to a quadratic 11 In (-1112-41671-10)
✗ =

equation is one which upon , 2 (6)
algebraic manipulation ,
reduces
to the form × =
11 I - 121 -1 240
12
↳ 2
10 2
3×-10 0
✗ t 3✗ = → ✗ t =


11+-1361
'
2-
✗ =

✗ t = 0 → ✗ ✗ t 1 = 0 12
✗ ,
,




4
( transpose ✗ and multiply by ✗ -
1) ✗ =
11 t 19 ✗ = 11
-

19
12 12
how to solve quadratic equation
30 5 -8
-2-3
✗ = = ✗ =
=

2
1
factoring 12 12




so1uti0n-2/z
2
quadratic formula
[ via
factoring ] vet : { 512 ,

-

if ab = 0 .
'
then a / b = 0
2
↳ ✗ t 3✗ =
10
the discriminant
'
☐ of the quad
2
✗ t 3×-10 =
0
( ✗ + 5) ( x
-

2) =
0 ratio polynomial axztbxtc
a b comes from the quadratic formula
is
f
✗ + 5 = O x -
2 =
0 and equal to b2 -
4ac
✗ = -

g ✗ =
2
if distinct real solutions

set:{-5①
solution D > 0 →
two
if D= 0 →
One real solution
if ☐ so → two imaginary solutions
1- hare
conjugate of each other
-




↳ 6×2 -
11×-10 = 0
(3×+2712×-5)=0 how to folvefiatronal exp
a b

2×-5=0
1 LCD



/
3×1-2=0
311=-2 2x =
5
2 multiply both sides
3 2
3 simplify
✗ =
-2/3 ✗ = 5/2


set:{-2/z,5/z
✗ t 4 2×-3 3×-8
solution -
=
✗ , z X -

5 ✗ 2--3×-10




ts
↳ ( ✗ 1- 2) ( x -
5)


3) =/ Jcxtz
2x -

3×-8
) )
[ via
quadratic formula ] 1×+2 -




✗ -5
-
let a. with
b. C E R a =/ 0 (x -
5) ✗ +2 ✗ 2-3×-10 ( x
-


)
s

if 9×2 t b. ✗ t C =
0 ,
then
( ✗ 1- 4) ( x -
5) -
( 2x -

3) ( ✗ 1- 2) = 3×-8
-
b ± -1 b2 -

4ac
✗ =


2A

, rational expressions
2
✗ -
✗ -

20 -
2×2 -
✗ -16
2
-
✗ -
2×-14=3 X
-
8
✓ ✗

f
2 2
-

-
5×-6 = 0 ✗ X

2
t 5×1-6 =
0 g
( ✗ 1- 3) ( ✗ t 2) =
0
2
a b 15 -2 ✗

/
=

-




✗ 1- 3=0 ✗ 1- 2 = 0 ✗
2
t 2x -

15
=
0
✗ =-3 ✗ = -

2 ( ✗ t 5) ( x
-
3) =
0
3 0
5 Of
=
5 ✗
-



↳ extraneous ✗ t =


-
will make the denominator ✗ = - ✗ =3




°%e¥°?{-g,z
=
01 undefined

set:{3①
solution




- -

↳ 2x t 3 1
}
✗ t in
,
= - quadratic formula ,
4 2
the ± means at

solution
( ) :( ;-)
Most 2 real
2×+3 ✗ t 1 - ,

12 ,
-

yz
4 z

3×2 -
✗ 1- 5 =

3 (2×1-3)
-
6( 1) ✗ 1- =
-
4 3×2 -

x -
✗ t 5 =
0
(6×+9) -

(6×+6) = -4 3×2 -
2×1-5 =
0
6×1-9 -

6×-6 =
-4 a b C

0 = -4 t 6 -

9
0 = -7 ✗ = 2 It 4 -

) (5)

contradiction 2. (3)


set:{}0r solution
✗ = 2 If -56
6
I
not a

real no .


2×+9 =
30 -

6× + ✗

+ Gx ✗ =
30 9 ↳
imaginary
-

2x
-




7- ✗ =
21


set:{①
y
7 solution
rincon
✗ =3 equation

set:{ solution
4×2 t

(2×1-7) (2×1-1)=0
4X t 1 =
0


2×1-1 = 0
✗ t ✗ -
2 = 2×-3 t 1 2x = -1
2x -
2 =
2×-2 2

identity ✗ =
-1/2

solution set : IR


?⃝
$6.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
suzannetnatividad

Conoce al vendedor

Seller avatar
suzannetnatividad University of the Philippines Diliman
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
3 año
Número de seguidores
1
Documentos
3
Última venta
3 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes