100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary O Level Additional Mathematics Chapter on Integration

Puntuación
-
Vendido
-
Páginas
35
Subido en
03-04-2022
Escrito en
2020/2021

This document provides a comprehensive explanation of the chapter on Integration for the Cambridge O Level Additional Mathematics Syllabus 4037. It can also be used for similar syllabi such as EDXCEL, International Baccalaureate, ZIMSEC, etc. It also has practice questions.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Chapter 13: integration
Subido en
3 de abril de 2022
Número de páginas
35
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

CHAPTER 13: INTEGRATION



Chapter objectives:

• understand integration as the reverse process of differentiation
/ /
• integrate sums of terms in powers of 𝑥 including and
T 6TU7

• integrate functions of the form (𝑎𝑥 + 𝑏) for any rational 𝑛 ,
sin(𝑎𝑥 + 𝑏), cos (𝑎𝑥 + 𝑏), 𝑒 6TU7
• evaluate definite integrals and apply integration to the evaluation of
plane areas
• apply integration to kinematics problems that involve displacement,
velocity and acceleration of a particle moving in a straight line with
variable or constant acceleration, and the use of 𝑥– 𝑡 and 𝑣– 𝑡 graphs



What is Integration?

Integration is the reverse process of differentiation. In other words, it is the
process of finding a function given its derivative. Integration has many
applications including finding the area bound by a graph and in kinematics.
The notation for integration is as follows:

] 𝑓(𝑥) 𝑑𝑥

Which is pronounced ‘the integral of 𝑓 of 𝑥 with respect to 𝑥’.



Basic rules of integration

Some of the basic rules of integration are quite like the basic rules of
integration. However, integration has other rules unique to it.

264

,1. If a function is the sum or difference of other functions, then its integral
is also the sum or difference of the integrals of those individual functions
i.e.:

𝑦 = 𝑓(𝑥 ) + 𝑔(𝑥 ) + ℎ(𝑥 ) + ⋯
→ ] 𝑦 𝑑𝑥 = ] 𝑓(𝑥) 𝑑𝑥 + ] 𝑔(𝑥) 𝑑𝑥 + ] ℎ(𝑥) 𝑑𝑥 + ⋯


2. A constant that multiplies or divides a function also multiplies or divides
its integral i.e.:

𝑦 = 𝑎𝑓 (𝑥 )
→ ] 𝑦 𝑑𝑥 = ] 𝑎 𝑓 (𝑥 )𝑑𝑥 = 𝑎 ] 𝑓(𝑥) 𝑑𝑥


3. Because the derivative of a constant is zero, the integral of zero should
then be a constant. Hence a constant of integration should always be
added in integration i.e.:


] 𝑓(𝑥) 𝑑𝑥 = 𝑔(𝑥 ) + 𝑐
(where 𝑐 is the constant of integration.)

4. Integration is the reverse process of differentiation. This means the
integral of the derivative of a function is the function itself (plus the
constant of integration)


] 𝑓 F (𝑥) 𝑑𝑥 = 𝑓 (𝑥 ) + 𝑐
OR:
𝑑𝑦
] 𝑑𝑥 = 𝑦 + 𝑐
𝑑𝑥
(where 𝑐 is the constant of integration)
265

,Example 13.1

a. Show that:
𝑑 sin 𝑥 1
‡ ˆ=
𝑑𝑥 cos 𝑥 − 1 1 − cos 𝑥
b. Hence find:

5
] 𝑑𝑥
1 − cos 𝑥



SOLUTION

a. The quotient rule of differentiation:
𝑑𝑢 𝑑𝑣
𝑑 𝑢 𝑣 −𝑢
x y = 𝑑𝑥 0 𝑑𝑥
𝑑𝑥 𝑣 𝑣
Hence:

𝑑 sin 𝑥
‡ ˆ
𝑑𝑥 cos 𝑥 − 1
(cos 𝑥 − 1)(cos 𝑥 ) − sin 𝑥 (− sin 𝑥)
=
(cos 𝑥 − 1)0

cos 0 𝑥 − cos 𝑥 + sin0 𝑥
=
(cos 𝑥 − 1)0

(cos 0 𝑥 + sin0 𝑥 ) − cos 𝑥
=
(cos 𝑥 − 1)0
1 − cos 𝑥
=
(cos 𝑥 − 1)0


266

, −(cos 𝑥 − 1)
=
(cos 𝑥 − 1)0
−1
=
cos 𝑥 − 1
1
=
−(cos 𝑥 − 1)
1
=
1 − cos 𝑥
(𝑠ℎ𝑜𝑤𝑛)



b. Using the knowledge that integration reverses differentiation and other
basic rules of integration the integral can be found.

∫ 𝑓 F (𝑥) 𝑑𝑥 = 𝑓(𝑥 ) + 𝑐
1 sin 𝑥
→] 𝑑𝑥 = +𝑐
1 − cos 𝑥 cos 𝑥 − 1
1 5 sin 𝑥
→ 5] 𝑑𝑥 = +𝑘 (∗ 𝑘 = 5𝑐 )
1 − cos 𝑥 cos 𝑥 − 1
5 5 sin 𝑥
∴] 𝑑𝑥 = +𝑘
1 − cos 𝑥 cos 𝑥 − 1
(where 𝑘 is the constant of integration)

*a multiple of a constant is also a constant.



Exercise 13.1

1. Using the fact that integration is the reverse process of differentiation
show that ∫ sin 𝑥 𝑑𝑥 = cos 𝑥.

267
$6.11
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Akudziwe

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Akudziwe Teachme2
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
5 año
Número de seguidores
1
Documentos
0
Última venta
5 año hace
Notes on STEM subjects by a medical student

I had A*s in all my Cambridge A Level Subjects and was top in Zimbabwe and overall in 2016. I will be selling study notes on all high school Science subjects including Mathematics, Additional Mathematics, Further Mathematics, Biology, Chemistry and Physics for all grades, matric, O Level/IGCSE, AS and A Level. These study notes helped me do really well all of high school and get into Wits Medical School. I will also have summary notes for 1-3rd year medical school.

Lee mas Leer menos
0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes