100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Exam (elaborations) TEST BANK FOR Statistical Physics of Particles By

Puntuación
-
Vendido
-
Páginas
216
Grado
A+
Subido en
13-02-2022
Escrito en
2021/2022

Exam (elaborations) TEST BANK FOR Statistical Physics of Particles By Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 III. Kinetic Theory of Gases . . . . . . . . . . . . . . . . . . . . . . . . 38 IV. Classical Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . 72 V. Interacting Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 93 VI. Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . 121 VII. Ideal Quantum Gases . . . . . . . . . . . . . . . . . . . . . . . . 138 Problems for Chapter I - Thermodynamics 1. Surface tension: Thermodynamic properties of the interface between two phases are described by a state function called the surface tension S. It is defined in terms of the work required to increase the surface area by an amount dA through dW¯ = SdA. (a) By considering the work done against surface tension in an infinitesimal change in radius, show that the pressure inside a spherical drop of water of radius R is larger than outside pressure by 2S/R. What is the air pressure inside a soap bubble of radius R? • The work done by a water droplet on the outside world, needed to increase the radius from R to R + ∆R is ∆W = (P − Po) · 4πR2 · ∆R, where P is the pressure inside the drop and Po is the atmospheric pressure. In equilibrium, this should be equal to the increase in the surface energy S∆A = S · 8πR · ∆R, where S is the surface tension, and ∆Wtotal = 0, =⇒ ∆Wpressure = −∆Wsurface , resulting in (P − Po) · 4πR2 · ∆R = S · 8πR · ∆R, =⇒ (P − Po) = 2S R . In a soap bubble, there are two air-soap surfaces with almost equal radii of curvatures, and Pfilm − Po = Pinterior − Pfilm = 2S R , leading to Pinterior − Po = 4S R . Hence, the air pressure inside the bubble is larger than atmospheric pressure by 4S/R. (b) A water droplet condenses on a solid surface. There are three surface tensions involved Saw, Ssw, and Ssa, where a, s, and w refer to air, solid and water respectively. Calculate the angle of contact, and find the condition for the appearance of a water film (complete wetting). • When steam condenses on a solid surface, water either forms a droplet, or spreads on the surface. There are two ways to consider this problem: Method 1: Energy associated with the interfaces 1 In equilibrium, the total energy associated with the three interfaces should be minimum, and therefore dE = SawdAaw + SasdAas + SwsdAws = 0. Since the total surface area of the solid is constant, dAas + dAws = 0. From geometrical considerations (see proof below), we obtain dAws cos θ = dAaw. From these equations, we obtain dE = (Saw cos θ − Sas + Sws) dAws = 0, =⇒ cos θ = Sas − Sws Saw . Proof of dAws cos θ = dAaw: Consider a droplet which is part of a sphere of radius R, which is cut by the substrate at an angle θ. The areas of the involved surfaces are Aws = π(R sin θ) 2 , and Aaw = 2πR2 (1 − cos θ). Let us consider a small change in shape, accompanied by changes in R and θ. These variations should preserve the volume of water, i.e. constrained by V = πR3 3

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
13 de febrero de 2022
Número de páginas
216
Escrito en
2021/2022
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

, Problems & Solutions



for

Statistical Physics of Particles



Updated July 2008

by

Mehran Kardar
Department of Physics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, USA

, Table of Contents


I. Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
II. Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
III. Kinetic Theory of Gases . . . . . . . . . . . . . . . . . . . . . . . . 38
IV. Classical Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . 72
V. Interacting Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 93
VI. Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . 121
VII. Ideal Quantum Gases . . . . . . . . . . . . . . . . . . . . . . . . 138

, Problems for Chapter I - Thermodynamics

1. Surface tension: Thermodynamic properties of the interface between two phases are
described by a state function called the surface tension S. It is defined in terms of the
work required to increase the surface area by an amount dA through d̄W = SdA.
(a) By considering the work done against surface tension in an infinitesimal change in
radius, show that the pressure inside a spherical drop of water of radius R is larger than
outside pressure by 2S/R. What is the air pressure inside a soap bubble of radius R?
• The work done by a water droplet on the outside world, needed to increase the radius
from R to R + ∆R is
∆W = (P − Po ) · 4πR2 · ∆R,

where P is the pressure inside the drop and Po is the atmospheric pressure. In equilibrium,
this should be equal to the increase in the surface energy S∆A = S · 8πR · ∆R, where S
is the surface tension, and

∆Wtotal = 0, =⇒ ∆Wpressure = −∆Wsurface ,

resulting in
2S
(P − Po ) · 4πR2 · ∆R = S · 8πR · ∆R, =⇒ (P − Po ) = .
R

In a soap bubble, there are two air-soap surfaces with almost equal radii of curvatures,
and
2S
Pfilm − Po = Pinterior − Pfilm = ,
R
leading to
4S
Pinterior − Po = .
R
Hence, the air pressure inside the bubble is larger than atmospheric pressure by 4S/R.
(b) A water droplet condenses on a solid surface. There are three surface tensions involved
S aw , S sw , and S sa , where a, s, and w refer to air, solid and water respectively. Calculate
the angle of contact, and find the condition for the appearance of a water film (complete
wetting).
• When steam condenses on a solid surface, water either forms a droplet, or spreads on
the surface. There are two ways to consider this problem:
Method 1: Energy associated with the interfaces

1
$12.72
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
COURSEHERO2

Conoce al vendedor

Seller avatar
COURSEHERO2 Maastricht University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
4
Miembro desde
4 año
Número de seguidores
2
Documentos
82
Última venta
11 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes