100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Samenvatting kans c

Puntuación
-
Vendido
-
Páginas
19
Subido en
23-01-2022
Escrito en
2021/2022

Samenvatting kans c leerjaar 2 periode 2

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
23 de enero de 2022
Número de páginas
19
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Samenvatting kans periode 2
Wortel n-wet
Bij de wortel n-wet horen twee stellingen.

Stelling nummer 1:
Gegeven zijn onderling onafhankelijk identiek verdeelde stochasten X 1, X2, … , Xn
met E(Xi) = μ en σ(Xi) = σ voor alle i.
We bekijken de stochast: T = X1 + X2 + … + Xn.
Dan geldt:
E(T) = n ⋅ μ
σ(T) = √(n) ⋅ σ

Stelling nummer 2:
Gegeven zijn onderling onafhankelijk identiek verdeelde stochasten X 1, X2, … , Xn
met E(Xi) = μ en σ(Xi) = σ voor alle i.
X1 + X2 + … + X n
We bekijken de stochast: G= .
n
Dan:
E(G) = μ
σ
σ(G) = .
√n
Normaal verdeelde stochasten:
Gegeven zijn onderling afhankelijke normaal verdeelde stochasten X1, X2, … , Xn met
E(Xi) = μ en σ(Xi) = σ voor alle i.
X1 + X 2 + … + X n
We bekijken de stochasten T = X1 + X2 + … + Xn en G= .
n
Dan geldt voor alle n:
T ~ Norm(n ∙ μ , √(n) ∙ σ )
σ
G ~ Norm( μ , )
√n
De stochast T =aX 1 +bX 2 is dan ook normaal verdeeld (geldt voor ieder lineaire
combinatie van stochasten).

Als bij niet-normaal verdeelde stochasten de n ≥ 30, kunnen wij deze normaal
benaderen.

,Standaardiseren van een stochast
Gegeven is een stochast X die normaal is verdeeld met Norm(μ, σ). Wij gaan nu de




X−μ
stochast Z bekijken: Z = . Dan is Z normaal verdeeld met Norm(0, 1).
σ

Populatie versus steekproef
Populatieparamaters:
- Fractie p
- Gemiddulde μ
- Variantie σ2
- Standaardeviatie σ
Steekproefparameters:
- Fractie ^p
- Gemiddelde x
- Variantie s2
- Standaardeviatie s

, Puntschatters
Met behulp van een puntschatter kunnen wij een onbekende populatieparameter θ.
Dit doen wij door één enkele waarde te schatten. Deze schatter noemen wij θ^ . Deze
schatter berekenen wij vanuit de steekproef. Hiervoor willen wij een ‘goede’ schatter,
want als die er teveel naast zit hebben we er niks aan. Wij verwachten dus dat de θ^
gelijk is aan θ, ofwel E(θ^ ) = θ. Een goede schatter noemen wij ook wel zuiver. Hoe
laten wij nou zien of een schatter zuiver is? Hiervoor heb ik een voorbeeld:
Toon aan dat θ= ^ 5 X +Y + 6 Z een zuivere schatter is voor μ.
12

(
E ( θ^ ) =E )
5 X +Y +6 Z
12
1 1 1 1
= E ( 5 X +Y +6 Z )= E ( 5 X ) + E ( Y )+ E ( 6 Z )=¿.
12 12 12 12
5 1 6 5 1 6
E ( X ) + E ( Y )+ E ( Z )= μ+ μ + μ=μ. Dus de schatter is zuiver.
12 12 12 12 12 12

Hoe groter de steekproef wordt, hoe meer de schatter lijkt op het echte gemiddelde.
Als wij namelijk een schatter hebben, is er altijd een variantie en standaardafwijking
die erbij hoort. Die standaardafwijking noemen wij ook wel de standaardfout. Als wij
de gehele populatie pakken, is die standaardfout altijd 0, want dat is gewoon het
gemiddelde dat klopt en je kan geen andere gegevens pakken. Wij willen deze
standaardfout dus zo klein mogelijk hebben. De standaardfout berekenen wij door
σ (θ) te berekenen van puntschatter θ^ . Dit doen wij op dezelfde manier als we in de
vorige hoofdstukken de standaardafwijking berekenen (zie tabel hierboven of wortel
n wet).

Gegeven is een binomiaal experiment van lengte n met (onbekende) succeskans p.
Laat X het aantal successen van de n keer. Dan:
De fractie successen
X
n
is zuivere schatter voor p, want: E ( )
X
n
= p.
$4.17
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
BartHoeks

Conoce al vendedor

Seller avatar
BartHoeks Hogeschool Arnhem en Nijmegen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3
Miembro desde
3 año
Número de seguidores
1
Documentos
8
Última venta
2 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes