100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary Quantitative Methods (MAN-BCU2030EN) GRADE: 8,4

Puntuación
-
Vendido
8
Páginas
26
Subido en
03-11-2021
Escrito en
2021/2022

This is a summary of all the lectures except for the article lectures. Content from the reader is also included in this and there are 3 pages of practice exam questions and possible exam questions. GRADE: 8,4

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
3 de noviembre de 2021
Número de páginas
26
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Summary Quantitative Methods 2021

Lecture 1: Introduction, data collection, variable types and methods of
analysis, OLS (conditions, pragmatism and justification)
Block 1: General considerations of quantitative methods

Variable types and methods of analysis

- Response variable (dependent variable) vs explanatory variable (independent variable)
- Manifest variable (directly observable variables for which we collect data) vs latent variable
(not directly observable, f. ex. Globalization)

- Nominal = categorical, qualitative -> no sense of order, no mean -> sex, color
- Ordinal = rank, satisfaction, fanciness -> order but not the same difference
- Interval ratio = things that can be measured -> weight, age

- Levels of measurement: n = frequencies and proportions o = frequencies and proportions,
sometimes mean i/r = mean, median, standard deviation
- Graphical representation: n = pie chart, bar chart, column chart o = bar chart, column chart
i/r = bar chart, histogram, boxplot, line chart

Block 2: Recap linear regression analysis (if dependent variable is metric -> Interval+Ratio)

- LRM is additive: all the effects are adding on top of each other
-



- By isolating other factors, you can look at the effect of 1 variable
- The linear regression line is estimated with help of the least squares method: take the line,
for which the sum of squared residuals is as small as possible.
- R-squared: a prediction based on the estimated parameters
- The residual is the deviation between the prediction and observation
- R-square(goodness-of-fit) measures how well the model fits the ovservations, the share of
the variation of Y that is explained by the model
o Poor model = 0% prediction -> linear line with observations in two horizontal lines
o Perfect model = 100% prediction
- Check model assumptions
o The sample consists of independent observations -> this is looked after during the
data collection
o A linear model is suitable, that is, the relationship between the dependent and the
independent variable is linear




1

, Spread is increasing, Negative residual -> Good range, equal
but linear predictions too low or quality predictions
high
o The variance of the residuals is equal for all possible values of the independent
variables (constant variance or homoscedasticity) -> the residuals observation needs
to be around the 0-line throughout the spectrum, otherwise the tests are unreliable
for a certain range.
o Residuals are normally distributed -> bell shape, mean should be 0 (otherwise
systematic problem)
- Outlier = observation that’s extremely different than the rest -> problematic because they
tend to shift your measured linear line in a wrong direction
o Detect outliers: look at observations beyond 3 standard deviations of the mean and
visualize with boxplots, histograms, probability plots and scatter plots.
o Study impact of influential cases: Compare regression outcomes with and without
influential cases, find out how big the impact is on your overall model fit (DFBETA
and DFFIT) and check if Cook’s distance is > 1
- Multicollinearity = correlations between too or more explanatory variables is too high (r < 0.8
or 0.9) -> in this case you can’t identify the individual effects anymore.
o Problem: it increases standard errors of regression coefficients, it limits the overall
model fit (R) and the interpretation of relevance of individual explanatory variables
becomes impassible.
o Rules of thumb for detection: VIF > 10 (or tolerance < 0.1) -> indicates serious
problems of multicollinearity. VIF substantially higher than 1 (or tolerance < 0.2) ->
multicollinearity may be a problem

Block 3: Linear regression: Model extensions and alternative model specifications

1. Dummy variables -> are categorical with value 0 or 1 -> are to conclude qualitative variables
in regression
- Produces two linear lines that are allows to have a constant difference in alpha
2. Interaction variables -> if the effect of an independent variable is influences by another
independent variable. In the linear model an interaction term is added (Multiplicative) -> if
the interaction term is significant, the regression lines will not be parallel.
3. What to do in case of non-linearity
- Add a non-linear term -> quadratic regression model
- Transform the variables -> logarithm, square root, reciprocal of number
- Other model specifications (second lecture)




2
$8.61
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
bestsummaries Radboud Universiteit Nijmegen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
67
Miembro desde
4 año
Número de seguidores
51
Documentos
12
Última venta
1 año hace

3.1

7 reseñas

5
0
4
3
3
3
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes