100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Samenvatting Colleges Applied Data Analysis

Puntuación
-
Vendido
2
Páginas
17
Subido en
29-01-2015
Escrito en
2012/2013

Samenvatting colleges Applied Data Analysis

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
29 de enero de 2015
Número de páginas
17
Escrito en
2012/2013
Tipo
Notas de lectura
Profesor(es)
Desconocido
Contiene
Todas las clases

Temas

Vista previa del contenido

Applied Data Analysis
Samenvatting
Intro lecture
After succesful completion of this course, you are expected to be able to:
- Recognize the main types of experimental and observational study design
- Choose the appropriate method of data analysis given the study design and type of
variables
- Prepare a protocol for data analysis
- Perform basic data analysis and interpret the results in a context of human intervention
trials and observational studies
- Quickly learn new data-analysis skills, which can be applied during thesis and research
- Understand the principles of calculation of sample size and study power and are able to
conduct these calculations for basic study designs
- Understand how stratification and regression analysis can be used to adjust for
confounding
- Understand the principles and procedures of energy-adjustment and is able to adjust
for energy using different methods.

Course is divided in ten topics:
1. SPSS
2. Practical modules
3. ANOVA
4. Analysis plan
5. Log-transformation and non-parametric tests
6. Logistic regression
7. Literature discussion
8. Sample size
9. Confounding
10.Energy adjustment

Lecture ANOVA
Intervention study designs:
- Parallel intervention study with more than two treatment arms
- Intervention study including baseline measurements
- 2x2 factorial design
- Repeated measures design

Parallel intervention study with more than two treatment arms
- One unexposed group, two exposed groups
Use:
- When you are interested in two different treatments for the same endpoint compared to
a placebo
Analyse:
- One-way ANOVA
o One continuous outcome (= dependent variable)
o One discrete exposure variable (= independent variable)
- H0 : μ1 = μ2 = μ3 (population means are equal)
Ha : at least one of the population means differs from the rest
One-way ANOVA: Compares variances in your data

, - Total variance: Sum of squares of the
total
- Variance explained by treatment:
model Sum of squares (between
groups)
- Unexplained variance: Residual sum
of squares (within groups)
 You want: big SSm and low SSr
F-ratio: MSm/MSr
MS = SS/df

Df: between groups: Ngroup-1
Within group: Npeople-Ngroup
Total df: between df+ within group df
Assumptions of ANOVA:
- Groups are more or less equal in size and have similar variances (homogeneity of
variance)
- Parametric test, dependent has normal distribution (also within groups!)
 What if assumptions are not met:
o Log-transformation
o Non-parametric test: Kruskal Wallis
Contrast and Post-Hoc tests
Contrast: when you have a specific hypothesis (each contrast compares two chunks of
variances)
compare one exposure group with the other, having the placebo group as a reference group
- Simple (first): each category is compared to the first category
- Simpe (last): each category is compared to the last category
- Repeated: each category (except the first) is compared to the previous category
Post-Hoc: when you have no specific hypothesis (LSD, Tukey, Bonferroni and dunnet)
- Pairwise comparisons that are designed to compare all different combinations of the
treatment groups
- Adjust for multiple comparisons
o LSD: ~similar to t-test for comparing each pair of treatments (multiple t-tests at
the same time)
o Tukey: p-value=0.05 holds for every pair of differences
o Bonferroni: p-value is multiplied by the number of comparisons
o Dunnett: to be used when comparing simultaneously a number of treatments
with a control
 Dunnett is only usable for comparing treatments with only 1 placebo group (which is
this case)

Intervention study including baseline measurements
Only two groups: unexposed and exposed
Two measurements: at the beginning and at the end
Analysis: ANCOVA
- One continuous outcome (=dependent variable)
- One discrete exposure variable (= independent variable)
- A covariate (continuous, independent variable)
- Hypothesis:
o H0 : μ1 = μ2 = μ3 (population means are equal while controlling for the effect of
one (or more) other variables)
o Ha : at least one of the population means differs from the rest
- Total variance: SSt

, - Variance explained by the
treatment: SSm (between groups)
- Unexplained variance:
o SSr (within groups)
o Explained by the covariate
 You want the variance by the
covariate out of the unexplained
variance to recalculate the F-
ratio to do the ANCOVA
 Therefor the unexplained
variance becomes smaller : test
= more powerful

2x2 factorial design
4 groups, with 2 exposures (group1: exposure 1, group 2: exposure 2, group 3: both
exposures, group 4: unexposed)
Compare two exposures at the same time with a placebo group
Why do you use it:
- Study interaction
o In epidemiology : Effect modification
o They show how the effect of one independent variable (exposure) might depend
on the effect of another
- Efficiency (especially when there is no interaction between the two different exposures)

Analysis:
Two-way ANOVA
- One continuous outcome (=dependent variable)
- Two discrete exposure variables (=independent variables)
 It is necessary that you have different participants in all the four groups
- Total variance (SSt)
- Unexplained variance (SSr, within groups)
- Explained by treatment variance (SSm,
between groups)
o Variance explained by Treatment A
(SSa)
o Variance explained by treatment B
(SSb)
o Variance explained by the interaction
of A and B (SSa*b)
- When there is no interaction, you can add up
the groups

Repeated measures design
Why do we use it?
- Interested in the change over time compared between treatment groups
Analysis:
Repeated measures ANOVA
- Continuous outcome measured more than once over time on the same subject
- One discrete exposure variable
- Two types of variation:
o Between-subject variation: treatment (exposure)
o Within-subject variation: more measurements on same subject in time (take
correlation into account)
- Equal variance assumption: in this test -> sphericity assumption (mauchly’s test of
sphericity P<0.05 -> variances are equal, more or less, when not adjust results: take
greenhouse-geisser adjustment)

Summerize:
ANOVA can be used for:
$3.78
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Veertje93 Wageningen University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
36
Miembro desde
10 año
Número de seguidores
29
Documentos
24
Última venta
4 año hace

3.5

6 reseñas

5
2
4
1
3
1
2
2
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes