100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Otro

APM2611 ASSIGNMENT 2 SEM 1 2021

Puntuación
-
Vendido
2
Páginas
26
Subido en
11-07-2021
Escrito en
2021/2022

This document contains solutions for APM2611 ASSIGNMENT 2 SEM 1 2021.All step by step workings are shown and explanation are provided.

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
11 de julio de 2021
Número de páginas
26
Escrito en
2021/2022
Tipo
Otro
Personaje
Desconocido

Temas

Vista previa del contenido

APM2611
ASSIGNMENT 2 2021


QUESTION 1


𝑻𝒉𝒆 𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝑺𝒆𝒓𝒊𝒆𝒔 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒐𝒏 𝒕𝒉𝒆 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 (−𝒑, 𝒑):

𝒂𝒐 𝒏𝝅𝒙 𝒏𝝅𝒙
𝒇(𝒙) = + ∑ (𝒂𝒏 𝐜𝐨𝐬 ( ) +𝒃𝒏 𝐬𝐢𝐧 ( ))
𝟐 𝒑 𝒑
𝒏=𝟏
𝟏 𝒑
𝒘𝒉𝒆𝒓𝒆 ∶ 𝒂𝒐 = ∫ 𝒇(𝒙) 𝒅𝒙
𝒑 −𝒑
𝟏 𝒑 𝒏𝝅𝒙
𝒂𝒏 = ∫ 𝒇(𝒙) 𝐜𝐨𝐬 ( ) 𝒅𝒙
𝒑 −𝒑 𝒑
𝟏 𝒑 𝒏𝝅𝒙
𝒃𝒏 = ∫ 𝒇(𝒙) 𝐬𝐢𝐧 ( ) 𝒅𝒙
𝒑 −𝒑 𝒑

0, − 1 ≤ 𝑥 ≤ 0
𝑓(𝑥) = {
𝑥, 0≤𝑥≤1

𝑇ℎ𝑒 𝑓𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [−1,1]

1 1
𝑎𝑜 = ∫ 𝑓(𝑥) 𝑑𝑥
1 −1
0 1
𝑎𝑜 = ∫ 0 𝑑𝑥 + ∫ 𝑥 𝑑𝑥
−1 0

1
𝑥2
𝑎𝑜 = 0 + [ ]
2 0

(1)2 (0)2
𝑎𝑜 = [ − ]
2 2

1
𝑎𝑜 =
2



1 𝑝 𝑛𝜋𝑥
𝑎𝑛 = ∫ 𝑓(𝑥) cos ( ) 𝑑𝑥
𝑝 −𝑝 𝑝

1 1 𝑛𝜋𝑥
𝑎𝑛 = [∫ 𝑓(𝑥) cos ( ) 𝑑𝑥]
1 −1 𝑝

, 1 0 𝑛𝜋𝑥 0
𝑛𝜋𝑥
𝑎𝑛 = [∫ 0 ∙ cos ( ) 𝑑𝑥 + ∫ 𝑥 cos ( ) 𝑑𝑥 ]
1 −1 1 −1 1



0 1
𝑎𝑛 = ∫ 0 ∙ cos(𝑛𝜋𝑥) 𝑑𝑥 + ∫ 𝑥 cos(𝑛𝜋𝑥) 𝑑𝑥
−1 0

1
𝑎𝑛 = ∫ 𝑥 cos(𝑛𝜋𝑥) 𝑑𝑥
0


𝑆𝑜𝑙𝑣𝑒 ∫ 𝑥 cos(𝑛𝜋𝑥) 𝑑𝑥 𝑏𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠


∫ 𝑥 cos(𝑛𝜋𝑥) 𝑑𝑥

𝐿𝑒𝑡: 𝑢 = 𝑥 𝑎𝑛𝑑 𝑑𝑣 = cos(𝑛𝜋𝑥)

sin(𝑛𝜋𝑥)
𝑑𝑢 = 1 𝑎𝑛𝑑 𝑣 =
𝑛𝜋

∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢

sin(𝑛𝜋𝑥) sin(𝑛𝜋𝑥)
∫ 𝑥 cos(𝑛𝜋𝑥) 𝑑𝑥 = 𝑥 −∫ 𝑑𝑥
𝑛𝜋 𝑛𝜋

𝑥 sin(𝑛𝜋𝑥) 1
= − ∫ sin(𝑛𝜋𝑥) 𝑑𝑥
𝑛𝜋 𝑛𝜋

𝑥 sin(𝑛𝜋𝑥) 1 cos(𝑛𝜋𝑥)
= − (− )
𝑛𝜋 𝑛𝜋 𝑛𝜋

𝑥 sin(𝑛𝜋𝑥) cos(𝑛𝜋𝑥)
= +
𝑛𝜋 𝑛2 𝜋 2
1 1
𝑥 sin(𝑛𝜋𝑥) cos(𝑛𝜋𝑥)
𝑎𝑛 = ∫ 𝑥 cos(𝑛𝜋𝑥) 𝑑𝑥 = [ + ]
0 𝑛𝜋 𝑛2 𝜋 2 0

(1) sin(𝑛𝜋(1)) cos(𝑛𝜋(1)) (0) sin(𝑛𝜋(0)) cos(𝑛𝜋(0))
𝑎𝑛 = [( + 2 2 )−( + )]
𝑛𝜋 𝑛 𝜋 𝑛𝜋 𝑛2 𝜋 2

sin(𝑛𝜋) cos(𝑛𝜋) sin(0) cos((0))
𝑎𝑛 = [( + 2 2 )−( + )] ∴ sin(𝑛𝜋) = 0 𝑎𝑛𝑑 cos(𝑛𝜋) = (−1)𝑛
𝑛𝜋 𝑛 𝜋 𝑛𝜋 𝑛2 𝜋 2

0 (−1)𝑛 0 1
𝑎𝑛 = [( + 2 2 ) − ( + 2 2 )]
𝑛𝜋 𝑛 𝜋 𝑛𝜋 𝑛 𝜋

(−1)𝑛 1
𝑎𝑛 = 2 2
− 2 2
𝑛 𝜋 𝑛 𝜋

, (−1)𝑛 − 1
𝑎𝑛 =
𝑛2 𝜋 2



1 𝑝 𝑛𝜋𝑥
𝑏𝑛 = ∫ 𝑓(𝑥) sin ( ) 𝑑𝑥
𝑝 −𝑝 𝑝

1 1 𝑛𝜋𝑥
𝑏𝑛 = ∫ 𝑓(𝑥) sin ( ) 𝑑𝑥
1 −1 1
1
𝑏𝑛 = ∫ 𝑓(𝑥) sin(𝑛𝜋𝑥) 𝑑𝑥
−1

0 1
𝑏𝑛 = ∫ 0 sin(𝑛𝜋𝑥) 𝑑𝑥 + ∫ 𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥
−1 0

1
𝑏𝑛 = ∫ 𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥
0


𝑆𝑜𝑙𝑣𝑒 ∫ 𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥 𝑏𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠:


∫ 𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥

𝐿𝑒𝑡: 𝑢 = 𝑥 𝑎𝑛𝑑 𝑑𝑣 = sin(𝑛𝜋𝑥)

cos(𝑛𝜋𝑥)
𝑑𝑢 = 1 𝑎𝑛𝑑 𝑣 = −
𝑛𝜋

∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢

𝑥 cos(𝑛𝜋𝑥) cos(𝑛𝜋𝑥)
∫ 𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥 = − +∫ 𝑑𝑥
𝑛𝜋 𝑛𝜋

𝑥 cos(𝑛𝜋𝑥) 1
=− + ∫ cos(𝑛𝜋𝑥) 𝑑𝑥
𝑛𝜋 𝑛𝜋

𝑥 cos(𝑛𝜋𝑥) 1 sin(𝑛𝜋𝑥)
=− + ( )
𝑛𝜋 𝑛𝜋 𝑛𝜋

𝑥 cos(𝑛𝜋𝑥) sin(𝑛𝜋𝑥)
=− +
𝑛𝜋 𝑛2 𝜋 2
1 1
𝑥 cos(𝑛𝜋𝑥) sin(𝑛𝜋𝑥)
𝑏𝑛 = ∫ 𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥 = [− + ]
0 𝑛𝜋 𝑛2 𝜋 2 0

(1) cos(𝑛𝜋(1)) sin(𝑛𝜋(1)) (0) cos(𝑛𝜋(0)) sin(𝑛𝜋(0))
𝑏𝑛 = [(− + 2 2 ) − (− + )]
𝑛𝜋 𝑛 𝜋 𝑛𝜋 𝑛2 𝜋 2
$9.62
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
jctutor0814378595 University of Pretoria
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1598
Miembro desde
5 año
Número de seguidores
781
Documentos
149
Última venta
4 meses hace

4.2

240 reseñas

5
136
4
50
3
31
2
10
1
13

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes