100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

MVDA Full Summary

Puntuación
5.0
(1)
Vendido
6
Páginas
52
Subido en
22-06-2021
Escrito en
2020/2021

MVDA summary from weeks 1-7, guaranteed pass

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
22 de junio de 2021
Número de páginas
52
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

MVDA. Athena Summary

Week 1: Multiple Regression Analysis (MRA)

- Two sets of variables, Y and X, where there is only one Y variable and multiple X
variables (simple regression = only 1 X variable)
- All variables are interval
- When 2 or more predictors are highly correlated

Simple Regression Analysis

Y = b0 + b1X + e

- b0 = intercept
- b1 = regression weight
- X = score of a person (independent variable)
- Y = dependent variable
- e = error

Parameters need to be estimated from data, we choose b0 and b1 in a way that sum of
squares error is as small as possible (least squares estimation)

Standard Regression Formula:




- ez = error term but in standard deviation units

Regression towards the mean: Predicted value of Y is always closer to the mean than the
value of X

Multiple Regression Analysis

Goal: predict one Y variable (dependent) with multiple X variables (independent)
predict score of Y variable based on X variables

---> Asymmetric question: we go from X to Y, not other way around
---> we assume a kind of causality (X causes Y), but can’t test this with regression (remains
a correlational test)
---> WE CANNOT TEST WHETHER X IS THE CAUSE

Multiple Regression Equation:

, - Y = dependent variable predicted by X variables
- Ŷ = predicted Y
- b0 = constant / intercept. Outcome of Y when all X variables are 0
- bk = regression weights per variable (coefficient)
- e = error term

Multiple Correlation




Used to define pearson correlation between the predicted and observed values of Y:
R = ryŷ

Multiple regression gives optimal prediction of Y, which can sometimes be our ultimate goal.

Explained variance: We can use regression to see how well our X variable actually predicts
Y variable and how well each individual X variable does so.

Multiple correlation, R, indicates the correlation between the predicted values of Y and the
actual values of Y.
R is always between 0 and 1.
If we square this correlation, we have proportion of shared variance between Ŷ and Y =
proportion of explained variance (VAF).
---> VAF = how much variance is accounted for




The higher the R², the better our prediction is as a whole.
R² is the value of the sample, but we can also calculate adjusted R², which we then apply to
the population.




- N = number of people (sample size)
- k = number of predictors

SPSS: R2 and Adjusted R2 in Model Summary

,R² change = shows if change in R² (explained variance) from first model to second model is
significant

Regression Weights

Regression weights indicate how much the predicted value of Y changes when the X
variable increases with 1 unit. Our predicted value is never entirely correct, so there is
always error.

Residual = Difference between predicted value of Y and the actual value of Y

Regression line is chosen in such a way that these residuals are as small as possible so that
we can make the most accurate prediction of the population based on the sample




= AS SMALL AS POSSIBLE

Least squares method = Making differences as small as possible. Draw regression line in
such a way that if you add up all individual differences (vertical lines) you get smallest
number as possible

Standardised regression weights = indicated by β (Beta in SPSS).

Value of the weight indicates how many standard deviations Y changes when X increases by
1 standard deviation. The constant disappears when standardising.

Advantage of β’s instead of normal b’s: we can compare them directly with each other. A
higher value compared to another predictor also means more influence than that predictor.
Unstandardised b’s can’t be compared to each other because they depend on the unit with
which X is measured

Disadvantage of β’s instead of b’s: they depend on the standard deviation of our sample.
If we would then use the same formula for a different sample, it could be problematic if this
sample has a different standard deviation.

Regression equation = fill in names for variables at Y and X, look at unstandardised
coefficients B column and use the number at the constant for b0, write down values under
Unstandardised coefficients B for each bw. Also possible to write down the standardised
regression equation by using values in standardized coefficients beta column.

, - Zero-order = pearson r correlation between predictor and dependent variable or
regression coefficient between dependent variable

(Squared) Semi-Partial correlation

Semi-partial correlation = how much does a predictor uniquely add to dependent variable
(squared)
Evaluate individual predictors
Correlation between X and Y with the overlapping correlation removed.
If we square those values, we get the uniquely explained variance of the predictor = how
much variance is explained uniquely by that predictor and not by any other predictor.
---> the higher the value, the more influential the predictor is when predicting Y
---> value between 1 and -1




SPSS: part correlation

Using Venn diagram, formula for uniquely explained variance of X1 (squared semipartial
correlation):
$6.04
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los comentarios
1 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
gaiaantico Universiteit Leiden
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
161
Miembro desde
4 año
Número de seguidores
113
Documentos
32
Última venta
1 mes hace

Hey guys! I have just recently graduated from Leiden University where I studied the International Bachelor of Psychology. I'm selling all my notes, which are either summaries, lecture notes, or key terms, or even some homework assignment solutions. These really helped me pass all of my exams, I hope they help you too! :)

3.8

12 reseñas

5
6
4
2
3
2
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes