100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary OCR Module 4: Electrons, Waves & Photons

Puntuación
-
Vendido
-
Páginas
19
Subido en
31-01-2026
Escrito en
2024/2025

Unlock your potential in OCR A Level Physics with these comprehensive revision notes covering the entirety of Module 4 Electrons Waves and Photons. Designed specifically for the H556 specification, this document provides a detailed and structured breakdown of every key topic required for the exam, making it the perfect resource for revision, homework assistance, or final exam preparation. These notes strip away the textbook fluff and focus strictly on the definitions, physics principles, and step by step derivations you need to secure top marks in Paper 1 Modelling Physics and Paper 2 Exploring Physics. The document begins with the fundamentals of electricity, covering charge and current, the distinction between electron flow and conventional current, and the derivation of the mean drift velocity equation. It progresses into energy, power, and resistance, offering clear explanations of electromotive force versus potential difference, Ohms law, and the IV characteristics for resistors, filament lamps, and diodes. Detailed sections on resistivity, thermistors, and LDRs are included, alongside practical skills for determining resistivity experimentally. The notes then cover complex electrical circuits, explaining Kirchhoffs first and second laws, the conservation of charge and energy, and how to solve problems involving series and parallel circuits. A significant portion is dedicated to internal resistance, including the analysis of EMF and terminal potential difference graphs, as well as the operation of potential divider circuits and sensing units. Moving into the Waves section, the notes provide a thorough examination of progressive waves, distinguishing between transverse and longitudinal motion, and explaining key concepts such as phase difference, intensity, and polarisation. The behavior of waves is explored through refraction, Snells law, and total internal reflection. The document delves deep into superposition and interference, providing the necessary theory and conditions for Youngs double slit experiment and diffraction gratings. It also covers the formation of stationary waves, detailing nodes, antinodes, and harmonics for strings and air columns. Finally, the guide concludes with Quantum Physics, bridging the gap between classical and modern physics. It explains the photon model, the electronvolt conversion, and the determination of the Planck constant using LEDs. The photoelectric effect is analyzed in depth, covering threshold frequency, work function, and Einsteins photoelectric equation. The notes finish with wave particle duality, discussing electron diffraction and the de Broglie wavelength. This is an essential resource for any student aiming for an A or A star in OCR Physics.

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Nivel de Estudio
Editores
Tema
Curso

Información del documento

Subido en
31 de enero de 2026
Número de páginas
19
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Current and Charge
Definitions:

 Electric Current ( I ): The rate of flow of charge.

 The Coulomb (C ): The unit of electric charge. One Coulomb is
defined as the amount of charge that passes a point in a circuit in 1
second when the current is 1 Ampere (1 C=1 As).

Key Equation:
ΔQ
I=
Δt

 I = Current (Amperes, A)

 Q = Charge (Coulombs, C)

 t = Time (Seconds, s)

Quantisation of Charge:

 Charge is quantised, meaning it comes in discrete packets.

 The smallest possible non-zero charge is the elementary charge (e
).

C (This is given in your data sheet).
−19
 e=1.60 ×10

The net charge on an object is always a multiple of e :

Q=±ne (Where n is the number of electrons added or removed).



2. Direction of Flow

You must distinguish between the two ways of describing flow in a circuit:

1. Conventional Current:

 Flows from Positive (+) to Negative (-).

 This is used for all circuit analysis, arrow diagrams, and rules
(like Fleming's Left Hand Rule).

2. Electron Flow:

 Electrons are negatively charged, so they are repelled by the
negative terminal and attracted to the positive.

 Actual electron flow is from Negative (-) to Positive (+).

Charge Carriers:

,  Metals: The charge carriers are delocalised electrons.

 Electrolytes (Liquids): The charge carriers are ions (both positive
and negative).



3. Kirchhoff’s First Law

Definition:
The sum of currents entering a junction is equal to the sum of currents
leaving the junction.

Physics Principle:
This is a statement of the Conservation of Charge. Charge cannot be
created or destroyed; therefore, whatever flows into a junction must flow
out.

Equation:
∑ I in =∑ I out



4. Mean Drift Velocity ( I = Anev )

This is the most common calculation topic for this section.

The Concept:
Inside a wire, electrons move randomly at very high speeds
(approx 105 ms−1). When a potential difference is applied, they drift slowly
towards the positive terminal. This slow, overall movement is the Mean
Drift Velocity (approx 10−4 ms−1 ).

The Equation:
I = Anev

Breakdown of Variables:

 I : Current (Amperes, A)

 A : Cross-sectional Area (m2).

2 π d2
 Watch out: Wires are usually cylinders. Area = π r or .
4
 Unit Trap: If diameter is given in mm, convert to meters first (
−3
1 mm=1 ×10 m).
 n : Number density of charge carriers (m−3).

,  This represents the number of free electrons per cubic metre
of material.

 e : Elementary charge (1.60 ×10−19 C).

 v : Mean drift velocity (m s−1).



5. Classification of Materials

Materials are classified as conductors, semiconductors, or insulators based
on their Number Density (n ).

1. Conductors (Metals):

 Very high number density (n ≈ 1028 m−3).

 Because n is so high, even a small drift velocity ( v) produces a
large current ( I ).

2. Semiconductors (Silicon, Germanium):

 Intermediate number density (n ≈ 1019 m−3).

 Unique property: As temperature increases, n
increases (more electrons break free), so resistance
decreases.

 Drift velocity needs to be much higher than in metals to
maintain the same current.

3. Insulators (Rubber, Plastic):

 Very low number density (n ≈ 0).

 Almost no free electrons to carry charge



Energy, Power, and Resistance
1. Electromotive Force (e.m.f.) vs Potential Difference (p.d.)

Both are measured in Volts (V), which is defined as Joules per Coulomb
(1 V=1 JC−1). However, the energy transfer happens in opposite directions.

Potential Difference (V ):

 Definition: The energy transferred from electrical energy to other
forms (heat, light, motion) per unit charge.

 Example: Across a bulb or resistor.
$7.04
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
ishanmukherjee1

Conoce al vendedor

Seller avatar
ishanmukherjee1 Queen Elizabeth\'s School
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
Nuevo en Stuvia
Miembro desde
1 día
Número de seguidores
0
Documentos
1
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes