100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

ISYE-6644 SIMULATION QUESTIONS & ANSWERS

Puntuación
-
Vendido
-
Páginas
6
Grado
A+
Subido en
16-01-2026
Escrito en
2025/2026

ISYE-6644 SIMULATION QUESTIONS & ANSWERS

Institución
ISYE 6644
Grado
ISYE 6644









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
ISYE 6644
Grado
ISYE 6644

Información del documento

Subido en
16 de enero de 2026
Número de páginas
6
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ISYE-6644 SIMULATION QUESTIONS & ANSWERS


(8.3) Find the sample variance of -3, -2, -1, 0, 1, 2, 3 - Answers -14/3 (or 4.666). If
sample is entire population than variance is 4.

(8.1) M/M/1 queue - Answers -queue length having a single server.

(8.3) If the expected value of your estimator equals the parameter that you're trying to
estimate, then your estimator is unbiased. True of False - Answers -True. This is the
definition of unbiasedness

(8.3) If X1, X2, ..., Xn are i.i.d. with mean mu, then the sample mean X-bar is unbiased
for mu. True or False - Answers -True.

(8.4) What is the MSE (Mean Squared Error) of an estimator? - Answers -Bias^2 +
Variance

(8.3) What is the expected value of the mean of a Pois(λ) random variable? - Answers -
λ is the mean and the variance

(8.3) What is the expected sample variance s^2 of a Pois(λ) random variable? -
Answers -λ is the sample variance and the mean

(8.4) Suppose that estimator A has bias = 3 and variance = 12, while estimator B has
bias -2 and variance = 14. Which estimator (A or B) has the lower mean squared error?
- Answers -B is lower. Bias^2 + Variance: 18 < 21

MLE - Answers -Maximum Likelihood Estimator - "A method of estimating the
parameters of a distribution by maximizing a likelihood function, so that under the
assumed statistical model the observed data is most probable."

(8.4) Suppose that X1=4, X2=3, X3=5 are i.i.d. realizations from an Exp(λ) distribution.
What is the MLE of λ? - Answers -0.25

(8.5/8.6) If X1=2, X2=−2, and X3=0 are i.i.d. realizations from a Nor(μ , σ^2) distribution,
what is the value of the maximum likelihood estimate for the variance σ^2? - Answers -
8/3. MLE of σ^2 is the summation of the squared differences (Xi - μ), all divided by n.

(8.5/8.6) Suppose we observe the Pois(λ) realizations X1=5, X2=9 and X3=1. What is
the maximum likelihood estimate of λ? - Answers -5. λ is estimated as the summation
of sample values divided by the number of sample values. (5+9+1)/3 = 5

(8.5) Suppose X1, ..., Xn are i.i.d. Bern(p). Find the MLE for p. - Answers -

, (8.7) Suppose that we have a number of observations from a Pois(λ) distribution, and it
turns out that the MLE for λ is λhat=5. What's the maximum likelihood estimate of
Pr(X=3)? - Answers -0.1404. P(X=x) = λ^x * e^(−λ) / x!

(8.6) TRUE or FALSE? It's possible to estimate two MLEs simultaneously, e.g., for the
Nor(μ,σ2) distribution. - Answers -True

(8.6) TRUE or FALSE? Sometimes it might be difficult to obtain an MLE in closed form.
- Answers -True. (There is a gamma example.)

(8.7) Suppose that the MLE for a parameter θ is θhat=4. Find the MLE for √θ. -
Answers -2. Invariance immediately implies that the MLE of √θ is simply √θhat = 2

(8.8) Suppose that we observe X1 = 5, X2 = 9, and X3 = 1. What's the method of
moments estimate of E[X^2]? - Answers -35.6667. Second moment is the sum of the
squared samples divided by the number of samples. (5^2 + 9^2 + 1^2) / 3 =
35.666666667

(8.9) Suppose we're conducting a χ^2 goodness-of-fit test with Type I error rate α = 0.01
to determine whether or not 100 i.i.d. observations are from a lognormal distribution with
unknown parameters μ and σ^2. If we divide the observations into 5 equal-probability
intervals and we observe a g-o-f statistic of χ0^2 = 11.2, will we ACCEPT (i.e., fail to
reject) or REJECT the null hypothesis of lognormality? - Answers -Reject. k = 5,
subtract 1 and subtract 2 for the two unknown parameters (or had to estimate), so
degrees of freedom is 2. critical value for dof 2 and alpha 0.01 is 9.21. 11.2 is not
smaller than 9.21 so we reject it. Not a good fit.

(8.9) Suppose H0 is true, but you've just rejected it! What have you done? - Answers -
Type I error

(8.10/8.11) The test statistic is χ0^2 = 9.12. Now, let's use our old friend α = 0.05 in our
test. Let k = 4 denote the number of cells (that we ultimately ended up with) and let s =
1 denote the number of parameters we had to estimate. Then we compare against
χ^2(α=0.05 , k − s − 1) = χ^2(α=0.05 , 2) = 5.99. Do we ACCEPT (i.e., fail to reject) or
REJECT the Geometric hypothesis? - Answers -Reject. The test statistic 9.12 is not
less than 5.99.

(8.12) Consider the PRN's U1 = 0.1 , U2 = 0.9 , and U3 = 0.2. Use Kolmogorov-Smirnov
with α = 0.05 to test to see if these numbers are indeed uniform. Do we ACCEPT (i.e.,
fail to reject) or REJECT uniformity? - Answers -Accept. From table, D(α=0.05, 3) =
0.70760. Create ordered sample set: 0.1, 0.2, 0.9. Since the max value of D test is
0.467, then we fail to reject because it is smaller.

(9.1) TRUE or FALSE? Simulation output (e.g., consecutive customer waiting times) is
almost never i.i.d. normal - and that's a big fat problem! - Answers -True
$13.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
GEEKA YALA UNIVERSITY
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2008
Miembro desde
3 año
Número de seguidores
1447
Documentos
48257
Última venta
6 horas hace

3.8

344 reseñas

5
171
4
61
3
44
2
16
1
52

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes