100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Time Series Final Exam Questions and Verified Answers

Puntuación
-
Vendido
-
Páginas
16
Grado
A+
Subido en
16-01-2026
Escrito en
2025/2026

Time Series Final Exam Questions and Verified Answers

Institución
Time Series
Grado
Time Series










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Time Series
Grado
Time Series

Información del documento

Subido en
16 de enero de 2026
Número de páginas
16
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Time Series Final Exam Questions and Verified
Answers
What is a Time Series? Correct Answer: A collection of data points corresponding
to temporal measurements of some quantitative variable

Ex: Hourly website traffic, daily rainfall, monthly sales, quarterly revenue, annual
crime rates

T/F: Arbitrarily swapping rows in a time series will fundamentally change the data
Correct Answer: True

Define Time Series Analysis Correct Answer: Typically refers to modeling the
relationship between the y and time

What does a time series model characterize the relationship between? Correct
Answer: Between a point in time and all the points before it

Define forecasting Correct Answer: Make predictions using a time series model

With forecasting, the further into the future we go, the {more/less} certain we are.
This {widens/narrows} our prediction intervals. Correct Answer: less certain

widen our intervals

At a very general level, we can think of Time Series Analysis and Forecasting as:
Correct Answer: Trying to understand the past to predict the future

Univariate vs Multivariate Time Series Models Correct Answer: Univariate:

-future values of Y are forecasted using ONLY knowledge of past values of Y

Multivariate:

,- Future values of Y are forecasted using past values of Y AND one or more other
predict variables

When could adding a predictor variable be helpful? Correct Answer: A predictor
variable could be helpful if its pattern with time looks similar or inverse to the OG
relationship you're looking at.

AKA if it's correlated with the response variable.

What are the three important features of a time series? Correct Answer: 1. Serial
Correlation

2. Trend

3. Seasonality

Define Serial Correlation.

How is it quantified? Correct Answer: Serial correlation: the phenomena that
observations closer together in time tend to be more similar than observations
farther apart in time

Quantified by the autocorrelation function

- with data with serial correlation, we would see a high autocorrelation for a small
lag, and a small autocorrelation for a large lag

Autocorrelation of lag x Correct Answer: cor(y_t, y_{t+x})

How can we visualize autocorrelation / serial correlation? Correct Answer: We can
visualize the extent of autocorrelation in a given time series using ACF plots

With serial correlation, the height of the line on the ACF plot will generally
decrease as lag increases.

Define Trend

, What can it generally be approximated with? Correct Answer: Trend: the general,
smoothed behavior of a time series

- looking past subtle variations

- "squint your eyes, what is the time series generally doing?"

Can generally be approximated with low order polynomials

Define Seasonality

What is its connection to autocorrelation? Correct Answer: Seasonality:
characteristic of a time series in which the data experiences regular and predictable
fluctuations according to some period

If a time series experiences seasonality with period s, then observations s time units
apart are similar to one another

- "very strong autocorrelation across some period s"

Three parts of the Time Series Decomposition Correct Answer: 1. Trend

2. Seasonality

3. Random Variation

Effective time series models handle both _____ and ______ by accounting for
____________. Correct Answer: handle both trend and seasonality by accounting
for various autocorrelation structures in the observed data

T/F: With the right model design, random variation is avoidable Correct Answer:
False

Random Variation is unavoidable and is the chief contributor to "model
uncertainty"
$13.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Ivie Southern New Hampshire University
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
19
Miembro desde
9 meses
Número de seguidores
1
Documentos
8234
Última venta
1 mes hace

3.3

6 reseñas

5
2
4
1
3
1
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes