100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions - Dynamics of Structures Theory and Applications to Earthquake Engineering 6th Edition by Anil K. Chopra | All Chapters.

Puntuación
-
Vendido
-
Páginas
604
Grado
A+
Subido en
08-01-2026
Escrito en
2025/2026

Solutions - Dynamics of Structures Theory and Applications to Earthquake Engineering 6th Edition by Anil K. Chopra | All Chapters.

Institución
Dynamics Of Structures
Grado
Dynamics Of Structures











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Dynamics Of Structures
Grado
Dynamics Of Structures

Información del documento

Subido en
8 de enero de 2026
Número de páginas
604
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Vista previa del contenido

PA
S
SV
IB
ES



PASSVIBES

, CHAPTER 1

Problem 1.1

Starting from the basic definition of stiffness, determine
the effective stiffness of the combined spring and write the
equation of motion for the spring–mass systems shown in
Fig. P1.1.
PA
Figure P1.1

Solution:
If ke is the effective stiffness,
fS  keu

u
S
k1
k1 u
fS fS
k2 u
k2
SV
Equilibrium of forces: fS  ( k1  k2 ) u
Effective stiffness: ke  fS u  k1  k2
Equation of motion: mu  keu  p ( t )
IB
ES


1
Copyright © 2023 Pearson Education, Inc. PASSVIBES

,Problem 1.2

Starting from the basic definition of stiffness, determine
the effective stiffness of the combined spring and write the
equation of motion for the spring–mass systems shown in
Fig. P1.2.




Figure P1.2

Solution:
PA
If ke is the effective stiffness,
fS  keu (a)

u
k1 k2
fS
S
If the elongations of the two springs are u1 and u2 ,
u  u1  u2 (b)
SV
Because the force in each spring is fS ,
fS  k1u1 fS  k2u2 (c)
Solving for u1 and u2 and substituting in Eq. (b) gives
fS f f 1 1 1
 S  S    
ke k1 k2 ke k1 k2
k1 k2
ke 
IB
k1  k2
Equation of motion: mu  keu  p ( t ) .
ES


2
Copyright © 2023 Pearson Education, Inc. PASSVIBES

, Problem 1.3

Starting from the basic definition of stiffness, determine
the effective stiffness of the combined spring and write the
equation of motion for the spring–mass systems shown in
Fig. P1.3.




Figure P1.3

Solution:
PA
k1 k3
m
Figure P1.3a
k2



k 1+ k 2 k3
m
S
Figure P1.3b



u
ke
SV
m
Figure P1.3c


This problem can be solved either by starting from the
definition of stiffness or by using the results of Problems
P1.1 and P1.2. We adopt the latter approach to illustrate
the procedure of reducing a system with several springs to
a single equivalent spring.
IB
First, using Problem 1.1, the parallel arrangement of
k1 and k2 is replaced by a single spring, as shown in Fig.
1.3b. Second, using the result of Problem 1.2, the series
arrangement of springs in Fig. 1.3b is replaced by a single
spring, as shown in Fig. 1.3c:
ES
1 1 1
 
ke k1  k2 k3
Therefore the effective stiffness is
( k1  k2 ) k3
ke 
k1  k2  k3
The equation of motion is mu  keu  p ( t ) .




3
Copyright © 2023 Pearson Education, Inc. PASSVIBES
$18.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Passvibes

Conoce al vendedor

Seller avatar
Passvibes Johns Hopkins University School Of Nursing
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
2 semanas
Número de seguidores
3
Documentos
253
Última venta
2 días hace
PASSVIBES - Your Ultimate Study Companion for Academic Excellence

Passvibes is your all-in-one global study guide hub — built to make learning simple, smart, and rewarding. We bring together thousands of high-quality study materials, topic-specific notes, and verified answers designed to help students master every subject with ease. Whether you’re in high school, college, or university, passvibes has everything you need — from clear explanations to exam-ready practice questions. Our goal is to turn studying into a confident, stress-free journey toward success. Trusted by learners and educators worldwide, passvibes is where great grades begin and excellence grows.

Lee mas Leer menos
0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes