100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions Manual Physical Chemistry Thermodynamics, Structure, and Change 10th Edition By Peter Atkins, Julio de Paula

Puntuación
-
Vendido
-
Páginas
552
Grado
A+
Subido en
30-12-2025
Escrito en
2025/2026

This is a complete solutions manual PDF for Physical Chemistry Thermodynamics, Structure, and Change 10th Edition By Peter Atkins, Julio de Paula. It provides detailed, step-by-step answers to all exercises and problems.

Institución
Physical Chemistry
Grado
Physical Chemistry











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Physical Chemistry
Grado
Physical Chemistry

Información del documento

Subido en
30 de diciembre de 2025
Número de páginas
552
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Vista previa del contenido

Solutions Manual
Physical Chemistry
Thermodynamics, Structure, and Change 10th Edition

By
Peter Atkins,
Julio de Paula



( All Chapters Included - 100% Verified Solutions )




1

, 1 The properties of gases
1A The perfect gas
Answers to discussion questions
1A.2 The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it
occupied alone the same container as the mixture at the same temperature. Dalton’s law is a
limiting law because it holds exactly only under conditions where the gases have no effect
upon each other. This can only be true in the limit of zero pressure where the molecules of
the gas are very far apart. Hence, Dalton’s law holds exactly only for a mixture of perfect
gases; for real gases, the law is only an approximation.


Solutions to exercises
1A.1(b) The perfect gas law [1A.5] is pV = nRT, implying that the pressure would be
nRT
p=
V
All quantities on the right are given to us except n, which can be computed from the given
mass of Ar.
25 g
n= −1
= 0.626 mol
39.95 g mol
(0.626 mol) × (8.31 × 10−2 dm 3 bar K −1 mol−1 ) × (30 + 273) K
so p= = 10.5bar
1.5 dm 3
So no, the sample would not exert a pressure of 2.0 bar.
1A.2(b) Boyle’s law [1A.4a] applies.
pV = constant so pfVf = piVi
Solve for the initial pressure:
pV (1.97 bar) × (2.14 dm 3 )
(i) pi = f f = = 1.07 bar
Vi (2.14 + 1.80) dm 3
(ii) The original pressure in Torr is
 1 atm   760 Torr 
pi = (1.07 bar) ×  × = 803 Torr
 1.013 bar   1 atm 

1A.3(b) The relation between pressure and temperature at constant volume can be derived from the
perfect gas law, pV = nRT [1A.5]
pi pf
so p ∝ T and =
Ti Tf
The final pressure, then, ought to be
pT (125 kPa) × (11 + 273)K
pf = i f = = 120 kPa
Ti (23 + 273)K

1A.4(b) According to the perfect gas law [1.8], one can compute the amount of gas from pressure,
temperature, and volume.
pV = nRT
pV (1.00 atm) × (1.013 × 105 Pa atm −1 ) × (4.00 × 103 m 3 )
so n= = = 1.66 × 105 mol
RT (8.3145 J K −1mol−1 ) × (20 + 273)K
Once this is done, the mass of the gas can be computed from the amount and the molar
mass:
−1
m = (1.66 × 105 mol) × (16.04 g mol ) = 2.67 × 106 g = 2.67 × 103 kg

1A.5(b) The total pressure is the external pressure plus the hydrostatic pressure [1A.1], making the
total pressure


1

2

, p = pex + ρgh .
Let pex be the pressure at the top of the straw and p the pressure on the surface of the liquid
(atmospheric pressure). Thus the pressure difference is
3
−3 1 kg  1 cm 
p − pex = ρ gh = (1.0 g cm ) × 3 ×  −2  × (9.81 m s −2 ) × (0.15m)
10 g  10 m 
= 1.5 × 103 Pa = 1.5 × 10−2 atm

1A.6(b) The pressure in the apparatus is given by
p = pex + ρgh [1A.1]
where pex = 760 Torr = 1 atm = 1.013×105 Pa,
3
 1 kg   1 cm 
and ρ gh = 13.55 g cm −3 ×  × × 0.100 m × 9.806 m s −2 = 1.33 × 104 Pa
 103 g   10−2 m 
p = 1.013 × 105 Pa + 1.33 × 104 Pa = 1.146 × 105 Pa = 115 kPa

pV pVm
1A.7(b) Rearrange the perfect gas equation [1A.5] to give R = =
nT T
All gases are perfect in the limit of zero pressure. Therefore the value of pVm/T extrapolated
to zero pressure will give the best value of R.
The molar mass can be introduced through
m
pV = nRT = RT
M
m RT RT
which upon rearrangement gives M = =ρ
V p p
The best value of M is obtained from an extrapolation of ρ/p versus p to zero pressure; the
intercept is M/RT.
Draw up the following table:
p/atm (pVm/T)/(dm3 atm K–1 mol–1) (ρ/p)/(g dm–3 atm–1)
0.750 000 0.082 0014 1.428 59
0.500 000 0.082 0227 1.428 22
0.250 000 0.082 0414 1.427 90
 pV 
From Figure 1A.1(a), R = lim  m  = 0.082 062 dm 3 atm K −1 mol−1
p→0
 T 
Figure 1A.1

(a)




2

3

, (b)




 ρ
From Figure 1A.1(b), lim   = 1.427 55 g dm -3 atm −1
p→0  p 


 ρ
M = lim RT   = (0.082062 dm 3 atm K −1 mol−1 ) × (273.15 K) × (1.42755 g dm -3 atm −1 )
p→0  p
= 31.9988 g mol−1
The value obtained for R deviates from the accepted value by 0.005 per cent, better than can
be expected from a linear extrapolation from three data points.
1A.8(b) The mass density ρ is related to the molar volume Vm by
V V m M
Vm = = × =
n m n ρ
where M is the molar mass. Putting this relation into the perfect gas law [1A.5] yields
pM
pVm = RT so = RT
ρ
Rearranging this result gives an expression for M; once we know the molar mass, we can
divide by the molar mass of phosphorus atoms to determine the number of atoms per gas
molecule.
−1
RT ρ (8.3145 Pa m 3 mol ) × [(100 + 273) K] × (0.6388 kg m −3 )
M= =
p 1.60 × 104 Pa
= 0.124 kg mol−1 = 124 g mol−1

The number of atoms per molecule is
−1
124 g mol
−1
= 4.00
31.0 g mol
suggesting a formula of P4 .
1A.9(b) Use the perfect gas equation [1A.5] to compute the amount; then convert to mass.
pV
pV = nRT so n=
RT
We need the partial pressure of water, which is 53 per cent of the equilibrium vapour
pressure at the given temperature and standard pressure. (We must look it up in a handbook
like the CRC or other resource such as the NIST Chemistry WebBook.)
p = (0.53) × (2.81 × 103 Pa) = 1.49 × 103 Pa



3

4
$29.48
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
reckmila

Conoce al vendedor

Seller avatar
reckmila Massachusetts Institute Of Technology
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
4 meses
Número de seguidores
0
Documentos
87
Última venta
5 días hace
Miss Fullmark

High-quality solutions manuals crafted to help you master every chapter and score full marks.

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes