# Ex 7.2, 31 - Chapter 7 Class 12 Integrals (Term 2)

Last updated at July 11, 2018 by Teachoo

Last updated at July 11, 2018 by Teachoo

Transcript

Ex7.2, 31 sin𝑥 1+ cos𝑥2 Step 1: Let 1+ cos𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 0−sin 𝑥= 𝑑𝑡𝑑𝑥 − sin 𝑥= 𝑑𝑡𝑑𝑥 𝑑𝑥 = 𝑑𝑡− sin 𝑥 Step 2: Integrating the function sin𝑥 1+ cos𝑥2 . 𝑑𝑥 putting 1+ 𝑐𝑜𝑠𝑥=𝑡 & 𝑑𝑥= 𝑑𝑡− sin 𝑥 = sin𝑥 𝑡2 . 𝑑𝑡− sin 𝑥 = 1− 𝑡2 = −1 1 𝑡2 . 𝑑𝑡 = −1 𝑡−2 +1−2 +1 +𝐶 = −1 𝑡−1−1 +𝐶 = 𝑡−1 +𝐶 = 1𝑡 +𝐶 = 𝟏𝟏+ 𝒄𝒐𝒔𝒙 +𝑪

Ex 7.2

Ex 7.2, 1

Ex 7.2, 2

Ex 7.2, 3 Important

Ex 7.2, 4

Ex 7.2, 5 Important

Ex 7.2, 6

Ex 7.2, 7 Important

Ex 7.2, 8

Ex 7.2, 9

Ex 7.2, 10 Important

Ex 7.2, 11 Important

Ex 7.2, 12

Ex 7.2, 13

Ex 7.2, 14 Important

Ex 7.2, 15

Ex 7.2, 16

Ex 7.2, 17

Ex 7.2, 18

Ex 7.2, 19 Important

Ex 7.2, 20 Important

Ex 7.2, 21

Ex 7.2, 22 Important

Ex 7.2, 23

Ex 7.2, 24

Ex 7.2, 25

Ex 7.2, 26 Important

Ex 7.2, 27

Ex 7.2, 28

Ex 7.2, 29 Important

Ex 7.2, 30

Ex 7.2, 31 You are here

Ex 7.2, 32 Important

Ex 7.2, 33 Important

Ex 7.2, 34 Important

Ex 7.2, 35

Ex 7.2, 36 Important

Ex 7.2, 37

Ex 7.2, 38 (MCQ) Important

Ex 7.2, 39 (MCQ) Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.