100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

COS1501 EXAM PACK 2025/2026 – QUESTION & ANSWERS

Beoordeling
-
Verkocht
-
Pagina's
86
Cijfer
A+
Geüpload op
11-11-2025
Geschreven in
2025/2026

COS1501 EXAM PACK 2025/2026 – QUESTION & ANSWERS QUESTIONS WITH ANSWERS, COMPILED FROM RECENT PAST EXAM PAPERS. PERFECT FOR EXAM PREPARATION.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
11 november 2025
Aantal pagina's
86
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

100% correct workings
COS1501 EXAM
PACK 2025/2026 –
QUESTION &
ANSWERS
QUESTIONS & ANSWERS




, lOMoARcPSD|18998289




2
COS1501
Example examination paper with discussions




SECTION 1
SETS AND RELATIONS
(Questions 1 to 12) (12 marks)


Questions 1 to 8 relate to the following sets:
Suppose U = {1, {2, 3}, 3, d, {d, e}, e} is a universal set with the following subsets:

A = {{2, 3}, 3, {d, e}}, B = {1, {2, 3}, d, e} and C = {1, 3, d, e}.

Before attempting the questions, let us write down the sets U, A, B and C, by adding spaces
between elements, so that common elements are vertically grouped:
U = {1, {2, 3}, 3, d, {d, e}, e}
A = { {2, 3}, 3, {d, e}}
B = {1, {2, 3}, d, e}
C = {1, 3, d, e}

We can clearly see, for example, that element {d, e} in U appears in subset A only. Or that
elements 1, d and e in U, also appear in subsets B and C. Or that the intersection of A and C
contains element 3 only. If you find it difficult to see which elements are in which set, it may
help you to write it in this way on rough in the exam.

Question 1
Which one of the following sets represents A  B?

1. {1, 2, 3, d, e}
2. {1, {2, 3}, 3, d, e}
3. {1, {2, 3}, 3, {d, e}}
4. {1, {2, 3}, 3, {d, e}, d, e}

Discussion:
A = { {2, 3}, 3, {d, e}}
B = {1, {2, 3}, d, e}
A  B represents the union of the sets A and B. This means, it contains elements that are in A
or in B or in both A and B. (Study guide p. 41).
Thus A  B = {1, {2, 3}, 3, d, {d, e}, e}. This corresponds to alternative 4. Remember that the
order of the elements in the set does not matter, as long as all elements are in the set. We
also do not repeat the same element in the set – although the element {2, 3} is in both A and
B, it only appears once in the set A  B.




[TURN OVER]


Downloaded by Syokstech ()

, lOMoARcPSD|18998289




3
COS1501
Example examination paper with discussions


Question 2
Which one of the following sets represents B  C?

1. {1, 3, d, e}
2. {1, d, e}
3. {d, e}
4. {3, {2, 3}}

Discussion:
B = {1, {2, 3}, d, e}
C = {1, 3, d, e}
The intersection of B and C contains all the elements that are in both subsets B and C, ie
elements that are common in B and C (Study guide p. 42).
Thus B  C = {1, d, e}, corresponding to alternative 2.

Question 3
Which one of the following sets represents C – A?

1. {1, {2, 3}, d, e, {d, e}}
2. {3, d, e}
3 {}
4. {1, d, e}

Discussion:
A = { {2, 3}, 3, {d, e}}
C = {1, 3, d, e}
C – A (Set difference / C without A) is the set of all elements that are in C, but not in A (Study
guide p. 42). This means that if an element appears in both A and C, it will be removed from
C to get C – A. It is clear that element 3 is in both A and C and should be removed from C,
thus
C – A = {1, d, e}, corresponding to alternative 4.




[TURN OVER]


Downloaded by Syokstech ()

, lOMoARcPSD|18998289




4
COS1501
Example examination paper with discussions


Question 4
Which one of the following sets represents U + B?

1. U
2. {3, {d, e}}
3. {1, {2, 3}, d, e}
4. (U – A) – C

Discussion:
U = {1, {2, 3}, 3, d, {d, e}, e}
B = {1, {2, 3}, d, e}

U + B (symmetric set difference) is the set of elements that are in U or in B, but not in both
(Study guide p. 43). This means we have to remove the elements that are in both U and B,
which are elements 1, {2, 3}, d and e. We then remain with elements 3 and {d, e}, thus
U + B = {3, {d, e}}, which corresponds to alternative 2.

Question 5
Which one of the following sets represents C  B ?

1. {3}
2. {1, d, e}
3. {1, 3, d, e}
4. {1, 3, {d, e}}

Discussion:
U = {1, {2, 3}, 3, d, {d, e}, e}
B = {1, {2, 3}, d, e}
C = {1, 3, d, e}

We first determine B(the complement of B – study guide p. 42). The complement of B is the
set of all elements that is in U but not in B. From the above it is clear that if we remove the
elements 1, {2, 3}, d and e in B from U, we are left with elements 3 and {d, e}, therefore,
B = {3 , {d, e}}. Now we can determine which elements should be in C  B.
C  B = {1, 3, d, e}  {3, {d, e}} = {3}, corresponding to alternative 1. (See definition of
intersection in Study guide p.42).
.




[TURN OVER]


Downloaded by Syokstech ()

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
ZaProff University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1974
Lid sinds
2 jaar
Aantal volgers
527
Documenten
2137
Laatst verkocht
2 dagen geleden

3,8

309 beoordelingen

5
131
4
61
3
63
2
23
1
31

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen