100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

STA2020F Applied Statistics – Lecture Slide Pack: Regression & ANOVA

Beoordeling
-
Verkocht
-
Pagina's
112
Geüpload op
07-08-2025
Geschreven in
2025/2026

STA2020F Applied Statistics – Lecture Slide Pack: Regression & ANOVA (Semester 1, 2025). This pack contains the full Regression and Analysis of Variance (ANOVA) lecture slides from STA2020F (Applied Statistics), exactly as taught during Semester 1, 2025. What’s included: • Complete lecture slides for Regression & ANOVA, • Two simple summaries included to help consolidate key ideas, • Neatly formatted and easy to read. Please note: • These are purely the lecture slides – no additional notes or annotations, • A few example slides may be missing if they weren’t covered in class, • Still a reliable and structured resource that follows the taught content closely. Perfect for: • Printing and bringing to lectures to annotate, • Creating your own summaries, • Seeing the full picture of the course content in a clear, organised format.

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
7 augustus 2025
Aantal pagina's
112
Geschreven in
2025/2026
Type
College aantekeningen
Docent(en)
Grace carmichael, ané cloete
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Simple Linear Regression
Outline
1. Recap of Foundational Concepts in Statistics
2. The Problem We Want to Solve:
3. Example Problem
4. Correlation Analysis
5. Simple Linear Regression



Recap of Foundational Concepts in Statistics
Population vs Sample

• When we refer to a numerical descriptor for a population we refer to it as a
parameter, where a numerical descriptor for a sample is referred to as a
statistic.
• We use sample statistics to approximate population parameters.

Statistical Inference

• Statistical inference is the attempt to reach a conclusion concerning a complete
set of observations (the population) using only a subset thereof (a sample).
• It is important to note that this sample needs to be representative of the
population in order to make accurate inference.
• We make use of sampling distributions to make inference.
• Statistical inference is conducted with the help of hypothesis testing.

Hypothesis Testing

Hypothesis testing allows us to make statements about a population from a sample of
that population. It involves the following basic steps:

Step 1: Define the null hypothesis (H0) This is the hypothesis of no statistical
significance. Step 2: Define the alternative hypothesis (Ha) This is the hypothesis of
statistical significance.

Step 3: Define the significance level (α) This is the type one error rate (probability of
falsely rejecting H0). Typically, α = 0.05 or α = 0.01 are sufficiently low. Step 4: Calculate
the test statistic This will be calculated differently depending on the test being
conducted.

,Step 5: Find the p-value This is the probability of getting a result as or more extreme
than the observed test statistic, assuming H0 is true. A precise p-value can be
generated using software or an approximate one using tables by hand.

Step 6: Make a conclusion If p-value is ≤ α, then we reject H0 and conclude statistical
significance of our result. Otherwise, we fail to reject H0 and conclude no statistical
significance (this means that we can’t make any statements about the population from
our sample result).

The problem we want to solve
Describing the relationship between two variables

• How strong is the relationship? (so we want to be able to quantify it) Is this
observed relationship likely real or just due to chance?
• Can we explain the impact that changing one variable has on another variable?
• Can we predict the value of one variable from another variable?



Lecture example
As part of an experiment, a lecturer recorded the overall course marks and number of
lectures attended for 20 students in the course that they teach. The results of this
experiment are shown below:

,Correlation analysis as a method to solve our problem
Correlation is a measure of strength and direction of a linear relationship between two
variables

• Correlation is bounded between -1 and 1.
• Correlation does not have a unit.
• Correlation cannot be used to predict one variable from another.

Correlation coefficient

• Correlation is measured using the correlation coefficient (typically the Pearson
correlation coefficient).
• The population correlation coefficient (ρ) measures the direction and strength of
the association between the full set of two variables.
• The sample correlation coefficient (r) is an estimate of ρ and measures the
direction and strength of the association between the two variables in a sample
of the population.
• The sample correlation coefficient is given by:




Test your understanding

Calculate the correlation coefficient between X and Y for the following 3 observations:

, Example of data with different correlation coefficients




Correlation analysis with our example
€3,11
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
catherineleppan

Maak kennis met de verkoper

Seller avatar
catherineleppan University of Cape Town
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
4 maanden
Aantal volgers
0
Documenten
3
Laatst verkocht
1 maand geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen