100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary inferential statistics (Exam part 2)

Beoordeling
-
Verkocht
-
Pagina's
35
Geüpload op
02-06-2025
Geschreven in
2024/2025

This document provide a summary of the material of the Inferential Statistic course for part 2, in preparation to the second exam. The notes include material from lectures, microlectures and the following book: van den Berg, S. M. (2021). Analysing Data using Linear Models. (5 ed.) University of Twente.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
2 juni 2025
Aantal pagina's
35
Geschreven in
2024/2025
Type
Samenvatting

Voorbeeld van de inhoud

Summary Statistics part 2
R-helpdesk


Week 6: Lecture: Multivariate Linear models, interaction
and non-linearity
Multivariate Linear Regression Model
Multivariate linear regression= used to estimate the relationship between two or more
independent variables and one dependent variable

Residuals

➢ Residuals should be normal and equal (across the lines and between the groups)
➢ Residuals are added/subtracted from the one line they pertain to
➢ Difficult to observe in a plot --> Store the residuals as data and inspect them in
additional plots

Interaction/moderation effect
• Variables have different intercepts
• Variables have different slopes

Non-linearity in linear models
➢ Linear models allow to study non-linear relationships
➢ The effect changes with the independent variable

Two ways to solve non-linearity:

1. Adding a square in the equations (quadratic term)
2. Using a logarithmic transformation

Unit 550 – Multiple regression addition: the effect of two variables
Addition regression models= variables are independently having an impact on a
dependent variable

The effect of a dummy and a ratio variable on a scale(ratio) variable
Example: Effects of education and family type upbringing on emotional intelligence

, • 𝛽0 = intercept of both groups when family type is 0
• 𝛽0 + 𝛽2 = intercept when family type is 1
• Education (𝛽1) has the same effect in both groups = parallel lines

Linear equation:




When analyzing data, always check:
1. Independent cases condition
2. Random selection of cases
3. Normal distribution
a. Residuals should be normal and equal
4. (10% condition) = if the population is huge and you select more than 10% you can't
use inferential statistics

Hypothesis in multiple regression: two types of expectations
General expectation:
➢ R² and F-test
H0: 𝛽2 = 𝛽1 = 0 (variables have no effect)
H1: at least one 𝛽 is not 0

Specific expectation(s):
➢ b-coefficients and t-test
H0: 𝛽... = 0 (variable has no effect)
H1: 𝛽... ≠ 0 (variable has an effect)

,Conclusion:
• Education has the same effect on Emotional Intelligence
• Family type upbringing has an effect - explains differences in Emotional intelligence

The effect of two ratio variables on a scale(ratio) variable
Example: Determinants of Ageism




• When you get older, your prejudice against other elderly goes down
• With more education, prejudice decrease




• Intercept (𝛽0) = level of Ageism if BOTH Age AND Education are 0
o Differences in Education are shown by differences in the intercept
• Age (𝛽1) has the same effect over all groups= parallel lines

Linear equation: addition
Addition= we add the effect of two variables to understand the dependent variable

, • 𝛽0 + 𝛽2= intercept
• 𝛽1= effect

When analyzing data, always check:
• Residuals: not possible to check using simple visual inspection
• Direction: check if b's are positive or negative

Studying residuals in a multivariate context
Residuals in a multivariate context are explained by both independent variables

➢ Residuals are added/subtracted from the one line they pertain to
➢ Difficult to observe in a plot --> Store the residuals as data and inspect them in
additional plots

Residuals should be:

➢ Normal distribution
➢ Equal variance everywhere in the model (across the lines and between the groups)

Why is it important to check if residuals are 'problematic'?

• Maybe not linearity
• Maybe other factors play a role too
• Standard errors used for inference will be 'wrong'

Steps for checking residuals
1. Check 'overall' normality in a histogram
2. Checking residuals with all x variables and y variables in the dataset/model
€9,66
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
annazanini2001
5,0
(1)

Maak kennis met de verkoper

Seller avatar
annazanini2001 Universiteit Twente
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
1 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
1 maand geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen