100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

summary quantum chemistry

Beoordeling
-
Verkocht
-
Pagina's
19
Geüpload op
17-03-2025
Geschreven in
2024/2025

Dit is een engelstalige samenvatting quantum chemistry gebaseerd op het book quantum chemistry and spectroscopy byThomas Engel from Pearson. It entails everything from this course.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
17 maart 2025
Aantal pagina's
19
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summery: introduction to quantum chemistry
Chapter 1: from classical to quantum mechanics
New theories: when experiment and theory agree the theory and its model = accepted
Of not => theory modified
2 key properties of QC:
1) Quantization
2) Wave-particle duality
Shown in following experiments:
1) Black body radiation (bbr)= thermal em radiation emitted
a. Thermodynamic equilibrium with its environment
b. Specific continuous spectrum of wavelengths


c. spectral density shows which frequencies are
radiated= E in EM field of BB at certain frequency /V/cm^-1
d.

e. Combining c and d =
Measure spectral density: broad maximum
(T rises; f rises too)
Classical theory : bb emits infinite E at high F
 Not possible!
 Solution Max Planck: E ~F
 E=nhv
o For a given v: energy is quantized
 E can take set of discrete values at given f



 and



 v/T is weak => Taylorexpansion E=kT (classical theory)
 v/T is high => E→0 radiation intensity→0
2) The photoelectric effect:
a. Light on a metal plate = absorbed → excitation of elektrons
b. Elektrons leave the metal => photo-elektrons
c. Absorbed energy = energy needed to eject an electron at eq and the kinetic
energy of emitted electron energy of system = CONSTANT
d. CT cannot predict this
e. Einstein: E~F => relation of energy light to energy electron
f.
g.

1

, h. Energy of electron= energy of photon- amount of
energy used to bound to solid
i. Omega= binding energy of e-= ionization E = work
function
j. In other words: K of e-<photon E by binding E
k. Beta: fitting data point = h! => E=hv




l.
wave like behaviour:


Broglie relationship: confirmed by Davisson and Gremer experiment
A moving particle has waves associated with it
1) If particles have wave nature under appropriate condition they should exhibit
diffraction
2) Shows wavelength of electrons
= double slit experiment
1) E- goes through slit one OR two
2) Don’t know through which slit the electron went
3) Inconsistent with the diffraction pattern => through both slits!
4) Result inconsistent with logic or classical physics
5) QM: electron = wave function = superposition of wavefunction going through 1 and 2
Explanation:e-wave = superposition of wave function through slit 1 AND 2= going through
both slits.
Bohr model:
Positive nucleus and elektrons orbiting around nucleus
➔ E- constantly accelerates=> crashes into the nucleus
➔ Orbits are stationary states
o Coulomb attraction to nucleus = centrifugal force
➔ Jump from high to lower by emitting a photon
De Broglie: orbits= standing electron waves with certain patterns
➔ Only certain frequencies
➔ Only certain energies E=hc/λ

Chapter 2: the Schrodinger equation

1) Time independent
a. ^H= operator
b. Psi = eigenfunction of operator; wavefunction depends on CO
c. E = eigenvalue



2

, When an operator operates on its eigenfunction it generates the eigenfunction multiplied by a
constant namely the eigenvalue.
2) Time dependent:
General principle in QM:
1) Operator for every physical observable
2) physical observable = everything that can be measured
3) if the wavefunction that describes a system is an eigenfunction of the operator then
the value of the observable is extracted by this operation
4) The value of the observable = eigenvalue and the system is in eigenstate.
a. Eigenstate=stationary state of a system
In QC Hermitian operators: eigenfunctions of HO = orthogonal and eigenvalue = real
Mathematical tools:
Particle described by wave-function y = single value when:
1) Position defined
2) Time
Time independent = stationary : energy, position coordinates stays the SAME
Wave function
Y = finite at 0 and infinity!
QM: particle not localised = PROBABILITY to be in a given volume (e- moves too fast to be
localised)

• dP=Y*YdV = finding particle in V
• density probability = dP/dV = Y*Y
• integration of Y over the total space = 1
o Y=normalized
operators
any physical quantity has an operator
 O transforms Y -> Y’
 OY = Y’
 OY = oY (operators scales Y) => Y = eigenfunction of O and o = eigenvalue
 =o = observable of state Y
Example: parity (exam) = symmetrie-eigenschappen van een system, system has parity
symmetrie when it looks the same after changing the x-co. If there is an inversion then there
is odd parity

Last function one term changes sign
other terms stays the same
 No parity can be defined
Operators = linear
 EF = EF when multiplied by a constant => normalize functions


3
€8,16
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
evawynen

Maak kennis met de verkoper

Seller avatar
evawynen Universiteit Antwerpen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
8 maanden
Aantal volgers
0
Documenten
6
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen