100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

College aantekeningen incl. samenvatting Quantum Mechanica 2

Beoordeling
-
Verkocht
-
Pagina's
46
Geüpload op
26-09-2024
Geschreven in
2021/2022

Uitgebreide college aantekeningen incl. zeer uitgebreide samenvatting van het vak Quantum Mechanica 2, gegeven door Juan Rojo in het 2e jaar van de bachelor Natuur-en Sterrenkunde aan de UvA/VU. De samenvattingen heb ik gemaakt voor de wekelijkse toetsjes die destijds plaatsvonden voor een bonus punt op het tentamen, deze hebben mij altijd geholpen om ook de kleine toetsjes goed te kunnen maken en een goed overzicht te kunnen bewaren van belangrijke concepten voor het tentamen.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
26 september 2024
Aantal pagina's
46
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Dr. juan rojo
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Quantum Mechanica 2

, Quantum Mechanics
Hoorcollege 1 - 7-2-22


Formalisms of QM



Schrödinger eg : MIX) =
-chVYIx = E



Heisenberg's uncertainty principle : AxAps


Hilbert space



The Cartesian space in 3 dimensions : #3 ; Fetth
↳ You can write
any vector in 3 dimensions as a sum /linear combination) : = an + Gratis
By using a matrix
you can transform a vector into another rector




The 3 vectors form a basis : [ ,
2 , s)

By choosing a ,
92 and as
you can recreate
any element in the
vector space


* Basisvectors orthonormal which that the scalar product (inproduct) Vi
Sij the scalar product is either 7 or 0
Uj
are means · = >
-

.
,




To describe the Hilbert space , we need state rectors > (x)



We call 1> a ket > Dirac notation



↑x E H (Hilbert spaces
↳> vector space
complex




All info about a quantumstate is incorporated into the State Vector (x)



State vectors are transformed by linear
operators

dimension of Hilbert space
al ↑
R
A2
Dirac notation &
ai /Xi]
(x :
: =



i = 1 ↳ basiselement
basis an
indepen -
cent
this expression makes it more explicit that
you're using a
choice of basis
Specific
J
n dit K
dimensional with
Ibasis dependent)



We've seen in linear that if elements of the Cartesian Vector space that multiplication by and
algebra two recoors are ,
some coefficients adding the results ,
the result will also be an element of the same vector space



En M

(a + bez) ERM a ,
De R


The holds in the Hilbert space
same
thing

(x) , 19)


(x) = a(x) + biB) -H a, be
↳ a and b are now complex numbers because the
Hilbert space is a
complex vector space .




analogue with the Schrodinger cat



Both the Hilbert
States are part of space , so :




1 alive) -H : Idead H



but also : lalive) + Idead) -H




Electron Spin


Spin up ↑ and spin down I
t -




We have 2 dimensions , therefore we need 2 basisvectors



The dimensions of the Hilbert the number of independent basisvectors
space are




a choice of basisrecorcould be : 1+ =
(b) ; 1- (i)

any (x)EH
element can be written as the linear superposition of the basiselements :




(x) =
c+ |+ 7 + c 1 -
> = c+ (b) + c (i) =
(c)
↳ This is the most general state that this
quantum system can have




J T measure the
-
spin of the
system , you will
only find 2 possibilities <
Spin up or spin down

↳ a of this will return two possible outcomes
measurement system
However, this does not mean states of 1) exist there is an infinite number of quantum States
only two >
-




↳ choice of coefficients
every different is a different quantum State

,Inner/Scalar product in Hilbert
Space

The scalar product reviewed :


E R


a =
(91 ,
92 , 93) : 5 = ( bi , ba , b3)



Scalar product : = Saibi = tâllcos
↳> parallel : /âlI
perpendicular : o




Scalar product in Hilbert Space :


# In-dim I .




=adi b
1) 13




The innerproduct is
given by <x1B) (t) :



↳ "Draket"
(7 = "Ket"



Bl =
"bra"


If Space (1x)tH) 1H * )
(x) is an element of the Hilbert
,
then each
corresponding 'bra-vector is not an element of the Hilbert space ,
but the dual Hilbert
space




the Hilbert Vector
Transforming from space to the dual Hilbert space
al

A2
(ai*, *,
*
IX) =
> (x1 =
aa an (
an
...




Ket > bra




So to ket to bra is to make the column a row and then take the
go from complex conjugate of each element



In different notation




(x)
Bai) with SIN] as basis of




(xl= Bi *
(il with Mil as basis of


Example of braket


(18) =
19. *, 92 *, ...,
an
*
)
(b)
Physical interpretation


(1B) is a measure of overlap in the Hilbert space


= (b) : Ec =
(9) >
-


plotting these vectors
you see
they are
perpendicular so
they have no overlap

= 16) : va =
(6) >
the recoors overlap :


So what this means is when the innerproduct is zero , there is no overlap ,
but if it's not zero there is some overlap


(x1B) = 0


↳> no overlap ; Vectors are
orthogonal




Using normalized State vectors


We know that 15(X)12 is the
a measure of the probability of finding particle in a
space

The idea is that when we take innerproducts of a state vector we can
assign them a ~
interpretation :




(x(x) = 17 H




Now, back to the electron and we saw that (x) is a linear combination of elements
going spin ,




Since the basis (xIB) of
is
orthogonal moet er
gelden dat 0 in dit
geval ( + 1 -7 0
= =
: :
,




We have two elements of this rector space :
1x
=
11 + > -
it -) = (1)
1p) = be 1 + + b21 -
3 =

(3)
What ?
are the values of bi , be such that (xIB) = 0




First , compute the innerproduct :
(x1B) = ( .
+ i)(b) = 0


complex


↓ (b) conjuga
te




by = -

ibz

, the this value is , the smaller the
Using Kronecker delta
& larger overlap
S
(4j(4)
=
(4
j /ci) I
Sij
linearalgebra Sij
↳ Kronecker delta




* a basis should be orthonormal


Here ,
(j
= <
4j14)
In the limit of complete overlap :


1) Ci(i) then
Cj < and Ci = 0
forif
=




When can compute cj by taking the innerproduct of one of the basis rectors with the
big state vector



(j (
4j(4)
=



N


IN: > <Mil =
1 is an
operator >
-


something that acts on a state rector and
gives me another state vector where both state vectors
belong do the same Hilbert space
i =1
↳ 814) =
153 Where 14) , 153 &H


Identity operator :
"14 :>< Mi =
1

i =1


3 =
C
Xi (4)
14

dummy
incét


Hilbert space in finite dimensions vs infinite dimensions


In the Hilbert dimensions we need an infinite number of basis elements
space of infinite


(dx4(x)(x)
S
(4) =


continuous
"Wave' particle's
&
I
element of
function Position
Hilbert




1y) =



i
"Ciltis
=
1
3 discrete (finite dimensions of Hilbert Space)


So, for the wave function
the infinite dimensions plays the role of the coefficient ci




( (dxx2(x)(x) (dxdxy, (x(x2(x) .x(y S dxy, *(x)X2(x)] overlap integral
*
(4. 142) = ax'4, (x)(x) = =




an infinite dimensions we use S(X'-X) (Dirac delta)


Discrete <4: /Kronecker deltal
:
14j) =
Sij

Continuous :< X11x) =
SIX-X) (Dirac deltal




(4143 =
( *
a xy (X)X(x) =

( d x(4(x) = 1 (because the warefunction in normalized(




M



Finite Hilbert space : 141) =

= =,
jic 141)

Infinite Hilbert space : 141) =

( dx + (x) (x)
,




* Table in the lecture notes to determine if finite of infinite

Note : Spatial dimension o Hilbert dimension




State rectors and operators

= (a) : m
=InS
m == (b) : Ben
Operator :8 applied to a staterector to make another State vector



& 141) =
152) ; 14 · 7, 1427 H


Inner product : 14 . 3
,
122) > C



Operator : 14,7 - 1427


In the finite dimensional Hilbers space : 8141) =
142)


1413
ailtibil
814 3
=(
--




,
=
142) =
:


·



Operators are basis independent ,
but the representations do depend on the basis


Action of 8 on 14) -H is determined
by 81 asiselements
·

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
sterrehoefs Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
22
Lid sinds
3 jaar
Aantal volgers
1
Documenten
10
Laatst verkocht
1 maand geleden

3,5

4 beoordelingen

5
1
4
1
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen