100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

College aantekeningen incl. samenvatting van het vak Quantum Concepten

Beoordeling
-
Verkocht
-
Pagina's
33
Geüpload op
26-09-2024
Geschreven in
2021/2022

Uitgebreide nette college aantekeningen van het vak Quantum Concepten gegeven door Jorik van de Groep in het 2e jaar van de bachelor Natuur-en Sterrenkunde aan de UvA/VU. Aan het eind van de college aantekeningen is een overview/samenvatting beschikbaar met per hoorcollege alle belangrijke concepten nog eens duidelijk op een rij gezet en omschreven.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
26 september 2024
Aantal pagina's
33
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Jorik van de groep
Bevat
Alle colleges

Voorbeeld van de inhoud

Quantum Concepten
Hoorcollege1
-

4 thema colleges en 1
herhalings college
atoomgassen quantum informatie elektronsystemen
> nanomaterialen , , ,
2d




ontwikkelen
meer
begrip
-




-
er
zijn 5 inlever
opgares /hier kun
je aan werken
tijdens de
werkcolleges
↳ minimaal 3 in leveren

5x
9%

-
tentamen 1x55 %; kort tentamen



-



syllabus hoofdstukken op Canvas /per week geplaatst)




Herhaling QM 1




In Classical Mechanics , we solve Newton's and law :



F =
ma =
m =X(t)


↳ know is
exactly where particle .




In Quantum Mechanics particles have wave behaviour described function :
,
by the wave



↑ (X ,
t)


In Quantum Mechanics ,
we solve
Schrodingers equation to
get the wave function :


~ external potential
it
ONteA + VP
↳ time
derivative
↓ and derivative
in
space




What does it mean ?

INR a
·

lik probability density
=




"

position of electron as a
function of
time is described by the wave function
b &
ab X


(IN( ,
t) ax :
gives probability of finding the
particle in this
range .




A


> Statistical interpretation

Notes : Particle is still a particle its location is described the wave function
by
·
,




· Inherent in determinacy



Particle has to be somewhere

~ Normalisation of the wave function :
A




& INIX tiax ,
= 1c use to find constants of wave function
-





**4
9 dx =




Exercise :


Mix t
Ac Siweh
real constants
=
,



↳ find Ak




~
Normaliseer de integraal : * =




In is door-i. ( etiwt)liwt
de complex geconjugeerde vervangen we alle




J he
&
↳ tijds afhankelijkheid vervalt


!
.




1Tax
= naal A
N
- e


buiten de inte
>
graal ! 6 ausische integraal
-
want constante



& Lax
.




Gausische integraal met standaardoplossing : eaxdxY
In dit geval : a = +
E en dus wordt de
oplossing ,
toc

A2 ,

10
Upon measurement :

INEx
12

m S
=

I I S
X X
↳ stort in
golffunctie
het moment dat
>
Op je meet weet je precies waar het
deeltje is de onzekerheid is opeens verdwenen ->
golf functie stort in
-


.
,




golffunctie wordt deltafunctie


(c)
* No more
uncertainty ,
one specific location
Ware function
*measure "collapses" upon measurement
again : same result

, Before measurement : What do we expect location to be ?



"expectation Value" (verwachtingswaarde) > <X)


~ Waar verwacht je dat het deeltje zich bevindt op het moment dat je het meet >
verwachtingswaarde
S




(x) =

( x (i(x ,
t))2ax
-



↳insert in front of
prob density




What does this mean !



> <X)
- is the
average of many measurements of X, of particles that have the exact same ware function



↳dus p identiefunctieswaarvanweallemaal metemen gemiddeldeen
daar neem het een
je




Mathematical tools




Define position "Operator" "working" ,
on a ware
function

* =
x = )
(y)
=

I 4
*
2xYNdx
&

-
2
=
xx =
Jy xydx*




Can we also define <
p >?


(p) = m(v) = mo(x)
↳ Schrödinger eq .
relates de to :




Pit De
s




↳ <p) = -




ih(*a
[p] = -
ingx


Now WecanDefine Dynamicvariables
in terms of xa!,




(T) = ax



-


Kinetische energie
Verwachtingswaarde




The uncertainty principle

Can we determine the location and momentum of a particle with
arbitrary accuracy ? (Like in Classical Mechanics



de Broglie formula :

P = hk =

22
↳ wave length




↑ X ? plaats kan hieruit niet worden afgeleid

.

I Golflengte
↑? > -
kan hieruit niet worden
afgeleid
3

&


X




& Heisenberg's uncertainty principle


Ex Op sh
↳ o =
(X -



(12] Standard deviation



Zowel impuls als plaats en
energie zijn operatoren in de QM , maar
tijd is dat niet



Tijd At levens duur elektron


S best
:




Energie = Zw : DE




Ok , so how do we find the actual form of the wave function ?

Let's revisit the Schrödinger equation :



~ external potential
it
O -t o = + VP
↳ time
derivative
↓ and derivative
in
space

↑ (x , t) function of X and t

↳ in reality ,
most potentials are independent of time .

, Separation of variables :
split X and t



M(x t) ,
=
((x)y(t)

in p d y +
vo

by =
7
+ V =
EY
↳ constant


in Et

in
-




=
Ey =
y(t) =
e



Time independent
-


Schrödinger equation :




+V =




Now ,
recall that =
-in and me


-hany + Vo =
Eq
2mdX
↳ kinetic ↳
potential ( total
energy
energy energy



↳ Hamiltonian operator J
82
2 =
- x
+ V(x) = jtp =
Ep




Eigenvalue problem :


↓ Eigenvalue

50 =
Eq
1-
Energy of eigen state
& &
S & ↑
Operator Eigenvector
E shape of
eigenstate


Examples of potentials :




Infinite square well


V(X) /
co




n= 3


~
20
oexa
vix =


M =2

~ otherwise

n=1



X

↳ En =
Methhe

The Harmonic Oscillator

xVIXI




~ V(x) = kx2


-
En =
(n 2) kw
+




-


& &
X




=>
Energy Spectra become discreet




The solution is
general a linear combination
of eigenstates :




M(x
o

Gifn'tS energy of staten
o




(nOn(Xigenstaten
,
ti =




n=
14
amplitude
coefficient

, Hoorcollege 2



-

Thema 7 : Quantum opsluiting in nanomaterialen



Leerdoelen :
·



Beschrijven van
quantumopsluiting in <D , 2D en 3D ; wat dit betekent voor de
golffunctie van elektronen


·

Voorbeelden noemen van nanomaterialen voor deze 3
categorieën
·

Quantumopsluiting <>
Deeltje-in-doosje
·
Schatten bij welke grootte van nanomaterialen
opsluiting een rol speelt
·
Praktische toepassingen

Experimenten beschrijven
·



waarin Lichtbaar is
quantumopsluiting .




Energieniveau's uitrekenen
·



van een elektron in een
quantumdot :
bijbehorende verwachtingswaarde voor de optische transitie




Contents of
today
:


·
Size does matter

Confinement and the ware function
·




· Dimensions of confinement

·
Free particle
Quantumwell >
-
1 D

Quantum wire -
> 2D
·

Quantum dot >
-
3D


Degeneracy and total
energy
·
Excitons , binding energy and Bohr radius


Optical properties
·




Size does matter




Properties of materials are
independent of their size...



Silicon "ingot" "wafer" >macroscopischobjectteomrooster
-
as the same properties as silicium as

↳ like : electrical conductivity
density
refractive index

heat transfer




-
down to a certain size
. Size does matter in the nanoworld :




Squantum dots




↳ in nanowereld quantumopsluiting vindt plaats
S
relevant >
maat is opeens
-




hiermee schuiven elektronenroosters en
↳ in kleine volumes
proppen van elektron golffuncties daarmee de
eigenschappen



Ok , then what is nano ?




In nanostructures , the electronic wave function can be confined


"Quantum Confinement "




↳ interfering wave functions cause standing wave patterns (staande golf)




&
" staande gof interfereert met zichzel
e





Scanning tunneling microscope

golf Functie 1112

Je meet hier direct de




How does confinement enter the
Schrödinger equation ?

t +
V)x = 2x =
24


↳ kinetic

energy
potentiaals

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
sterrehoefs Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
22
Lid sinds
3 jaar
Aantal volgers
1
Documenten
10
Laatst verkocht
1 maand geleden

3,5

4 beoordelingen

5
1
4
1
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen